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1 Getting Started

Optimization Toolbox Product Description
Solve linear, quadratic, integer, and nonlinear optimization problems

Optimization Toolbox provides functions for finding parameters that minimize
or maximize objectives while satisfying constraints. The toolbox includes
solvers for linear programming, mixed-integer linear programming, quadratic
programming, nonlinear optimization, and nonlinear least squares. You
can use these solvers to find optimal solutions to continuous and discrete
problems, perform tradeoff analyses, and incorporate optimization methods
into algorithms and applications.

Key Features

• Nonlinear and multiobjective optimization

• Solvers for nonlinear least squares, data fitting, and nonlinear equations

• Quadratic and linear programming

• Mixed-integer linear programming

• Optimization app for defining and solving optimization problems and
monitoring solution progress

• Acceleration of constrained nonlinear solvers with Parallel Computing
Toolbox™

1-2



Solve a Constrained Nonlinear Problem

Solve a Constrained Nonlinear Problem

In this section...

“Problem Formulation: Rosenbrock’s Function” on page 1-3

“Defining the Problem in Toolbox Syntax” on page 1-4

“Running the Optimization” on page 1-6

“Interpreting the Result” on page 1-11

Problem Formulation: Rosenbrock’s Function
Consider the problem of minimizing Rosenbrock’s function

f x x x x( ) ( ) ,= −( ) + −100 12 1
2 2

1
2

over the unit disk, i.e., the disk of radius 1 centered at the origin. In other

words, find x that minimizes the function f(x) over the set x x1
2

2
2 1+ ≤ . This

problem is a minimization of a nonlinear function with a nonlinear constraint.

Note Rosenbrock’s function is a standard test function in optimization. It
has a unique minimum value of 0 attained at the point (1,1). Finding the
minimum is a challenge for some algorithms since it has a shallow minimum
inside a deeply curved valley.

Here are two views of Rosenbrock’s function in the unit disk. The vertical
axis is log-scaled; in other words, the plot shows log(1+f(x)). Contour lines
lie beneath the surface plot.
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Rosenbrock’s function, log-scaled: two views.

The function f(x) is called the objective function. This is the function you wish

to minimize. The inequality x x1
2

2
2 1+ ≤ is called a constraint. Constraints

limit the set of x over which you may search for a minimum. You can have
any number of constraints, which are inequalities or equations.

All Optimization Toolbox optimization functions minimize an objective
function. To maximize a function f, apply an optimization routine to minimize
–f. For more details about maximizing, see “Maximizing an Objective” on
page 2-31.

Defining the Problem in Toolbox Syntax
To use Optimization Toolbox software, you need to
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1 Define your objective function in the MATLAB® language, as a function file
or anonymous function. This example will use a function file.

2 Define your constraint(s) as a separate file or anonymous function.

Function File for Objective Function
A function file is a text file containing MATLAB commands with the extension
.m. Create a new function file in any text editor, or use the built-in MATLAB
Editor as follows:

1 At the command line enter:

edit rosenbrock

The MATLAB Editor opens.

2 In the editor enter:

function f = rosenbrock(x)
f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;

3 Save the file by selecting File > Save.

File for Constraint Function
Constraint functions must be formulated so that they are in the form

c(x) ≤ 0 or ceq(x) = 0. The constraint x x1
2

2
2 1+ ≤ needs to be reformulated as

x x1
2

2
2 1 0+ − ≤ in order to have the correct syntax.

Furthermore, toolbox functions that accept nonlinear constraints need to
have both equality and inequality constraints defined. In this example there
is only an inequality constraint, so you must pass an empty array [] as the
equality constraint function ceq.

With these considerations in mind, write a function file for the nonlinear
constraint:

1 Create a file named unitdisk.m containing the following code:
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function [c, ceq] = unitdisk(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];

2 Save the file unitdisk.m.

Running the Optimization
There are two ways to run the optimization:

• Using the “Optimization app” on page 1-6

• Using command line functions; see “Minimizing at the Command Line”
on page 1-10.

Optimization app

1 Start the Optimization app by typing optimtool at the command line.
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For more information about this tool, see “Optimization App” on page 5-2.

2 The default Solver fmincon - Constrained nonlinear minimization
is selected. This solver is appropriate for this problem, since Rosenbrock’s
function is nonlinear, and the problem has a constraint. For more
information about how to choose a solver, see “Choosing a Solver” on page
2-4.

3 In the Algorithm pop-up menu choose Interior point, which is the
default.
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4 For Objective function enter @rosenbrock. The @ character indicates
that this is a function handle of the file rosenbrock.m.

5 For Start point enter [0 0]. This is the initial point where fmincon
begins its search for a minimum.

6 For Nonlinear constraint function enter @unitdisk, the function
handle of unitdisk.m.

Your Problem Setup and Results pane should match this figure.

7 In the Options pane (center bottom), select iterative in the Level of
display pop-up menu. (If you don’t see the option, click Display to
command window.) This shows the progress of fmincon in the command
window.
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8 Click Start under Run solver and view results.

The following message appears in the box below the Start button:

Optimization running.

Objective function value: 0.045674824758137236

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Your objective function value may differ slightly, depending on your computer
system and version of Optimization Toolbox software.

The message tells you that:

• The search for a constrained optimum ended because the derivative of the
objective function is nearly 0 in directions allowed by the constraint.

• The constraint is satisfied to the requisite accuracy.

“Exit Flags and Exit Messages” on page 3-3 discusses exit messages such
as these.

The minimizer x appears under Final point.
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Minimizing at the Command Line
You can run the same optimization from the command line, as follows.

1 Create an options structure to choose iterative display and the
interior-point algorithm:

options = optimoptions(@fmincon,...
'Display','iter','Algorithm','interior-point');

2 Run the fmincon solver with the options structure, reporting both the
location x of the minimizer, and value fval attained by the objective
function:

[x,fval] = fmincon(@rosenbrock,[0 0],...
[],[],[],[],[],[],@unitdisk,options)

The six sets of empty brackets represent optional constraints that are not
being used in this example. See the fmincon function reference pages for
the syntax.

MATLAB outputs a table of iterations, and the results of the optimization:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the selected value of the function tolerance,

and constraints are satisfied to within the selected value of the constraint tolerance.

x =

0.7864 0.6177
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fval =

0.0457

The message tells you that the search for a constrained optimum ended
because the derivative of the objective function is nearly 0 in directions
allowed by the constraint, and that the constraint is satisfied to the requisite
accuracy. Several phrases in the message contain links that give you more
information about the terms used in the message. For more details about
these links, see “Enhanced Exit Messages” on page 3-5.

Interpreting the Result
The iteration table in the command window shows how MATLAB searched for
the minimum value of Rosenbrock’s function in the unit disk. This table is
the same whether you use Optimization app or the command line. MATLAB
reports the minimization as follows:

First-order Norm of

Iter F-count f(x) Feasibility optimality step

0 3 1.000000e+00 0.000e+00 2.000e+00

1 13 7.753537e-01 0.000e+00 6.250e+00 1.768e-01

2 18 6.519648e-01 0.000e+00 9.048e+00 1.679e-01

3 21 5.543209e-01 0.000e+00 8.033e+00 1.203e-01

4 24 2.985207e-01 0.000e+00 1.790e+00 9.328e-02

5 27 2.653799e-01 0.000e+00 2.788e+00 5.723e-02

6 30 1.897216e-01 0.000e+00 2.311e+00 1.147e-01

7 33 1.513701e-01 0.000e+00 9.706e-01 5.764e-02

8 36 1.153330e-01 0.000e+00 1.127e+00 8.169e-02

9 39 1.198058e-01 0.000e+00 1.000e-01 1.522e-02

10 42 8.910052e-02 0.000e+00 8.378e-01 8.301e-02

11 45 6.771960e-02 0.000e+00 1.365e+00 7.149e-02

12 48 6.437664e-02 0.000e+00 1.146e-01 5.701e-03

13 51 6.329037e-02 0.000e+00 1.883e-02 3.774e-03

14 54 5.161934e-02 0.000e+00 3.016e-01 4.464e-02

15 57 4.964194e-02 0.000e+00 7.913e-02 7.894e-03

16 60 4.955404e-02 0.000e+00 5.462e-03 4.185e-04

17 63 4.954839e-02 0.000e+00 3.993e-03 2.208e-05

18 66 4.658289e-02 0.000e+00 1.318e-02 1.255e-02

19 69 4.647011e-02 0.000e+00 8.006e-04 4.940e-04

20 72 4.569141e-02 0.000e+00 3.136e-03 3.379e-03
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21 75 4.568281e-02 0.000e+00 6.439e-05 3.974e-05

22 78 4.568281e-02 0.000e+00 8.000e-06 1.083e-07

23 81 4.567641e-02 0.000e+00 1.601e-06 2.793e-05

24 84 4.567482e-02 0.000e+00 2.062e-08 6.916e-06

This table might differ from yours depending on toolbox version and computing
platform. The following description applies to the table as displayed.

• The first column, labeled Iter, is the iteration number from 0 to 24.
fmincon took 24 iterations to converge.

• The second column, labeled F-count, reports the cumulative number
of times Rosenbrock’s function was evaluated. The final row shows an
F-count of 84, indicating that fmincon evaluated Rosenbrock’s function
84 times in the process of finding a minimum.

• The third column, labeled f(x), displays the value of the objective function.
The final value, 0.04567482, is the minimum that is reported in the
Optimization app Run solver and view results box, and at the end of the
exit message in the command window.

• The fourth column, Feasibility, is 0 for all iterations. This column shows
the value of the constraint function unitdisk at each iteration where the
constraint is positive. Since the value of unitdisk was negative in all
iterations, every iteration satisfied the constraint.

The other columns of the iteration table are described in “Iterative Display”
on page 3-17.
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Set Up a Linear Program

In this section...

“Convert a Problem to Solver Form” on page 1-13

“Model Description” on page 1-13

“Solution Method” on page 1-15

“Bibliography” on page 1-22

Convert a Problem to Solver Form
This example shows how to convert a problem from mathematical form into
Optimization Toolbox solver syntax. While the problem is a linear program,
the techniques apply to all solvers.

The variables and expressions in the problem represent a model of operating
a chemical plant, from an example in Edgar and Himmelblau [1]. There are
two videos that describe the problem.

• Optimization Modeling 1 shows the problem in pictorial form. It shows
how to generate the mathematical expressions of “Model Description” on
page 1-13 from the picture.

• Optimization Modeling 2 describes how to convert these mathematical
expressions into Optimization Toolbox solver syntax. This video shows how
to solve the problem, and how to interpret the results.

The remainder of this example is concerned solely with transforming the
problem to solver syntax. The example closely follows the video Optimization
Modeling 2. The main difference between the video and the example is that
this example shows how to use named variables, or index variables, which
are similar to hash keys. This difference is in “Combine Variables Into One
Vector” on page 1-16.

Model Description
The video Optimization Modeling 1 suggests that one way to convert a
problem into mathematical form is to:
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1 Get an overall idea of the problem

2 Identify the goal (maximizing or minimizing something)

3 Identify (name) variables

4 Identify constraints

5 Determine which variables you can control

6 Specify all quantities in mathematical notation

7 Check the model for completeness and correctness

For the meaning of the variables in this section, see the video Optimization
Modeling 1.

The optimization problem is to minimize the objective function, subject to all
the other expressions as constraints.

The objective function is:

0.002614 HPS + 0.0239 PP + 0.009825 EP.

The constraints are:

2500 ≤ P1 ≤ 6250
I1 ≤ 192,000
C ≤ 62,000
I1 - HE1 ≤ 132,000
I1 = LE1 + HE1 + C
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
3000 ≤ P2 ≤ 9000
I2 ≤ 244,000
LE2 ≤ 142,000
I2 = LE2 + HE2
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
LPS = LE1 + LE2 + BF2
MPS = HE1 + HE2 + BF1 - BF2
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P1 + P2 + PP ≥ 24,550
EP + PP ≥ 12,000
MPS ≥ 271,536
LPS ≥ 100,623
All variables are positive.

Solution Method
To solve the optimization problem, take the following steps.

1 “Choose a Solver” on page 1-15

2 “Combine Variables Into One Vector” on page 1-16

3 “Write Bound Constraints” on page 1-18

4 “Write Linear Inequality Constraints” on page 1-18

5 “Write Linear Equality Constraints” on page 1-19

6 “Write the Objective” on page 1-20

7 “Solve the Problem with linprog” on page 1-20

8 “Examine the Solution” on page 1-21

The steps are also shown in the video Optimization Modeling 2.

Choose a Solver
To find the appropriate solver for this problem, consult the “Optimization
Decision Table” on page 2-4. The table asks you to categorize your problem
by type of objective function and types of constraints. For this problem, the
objective function is linear, and the constraints are linear. The decision table
recommends using the linprog solver.

As you see in “Problems Handled by Optimization Toolbox Functions” on
page 2-14 or the linprog function reference page, the linprog solver solves
problems of the form
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min
,

,
.

x

Tf x
A x b

Aeq x beq
lb x ub

 such that 
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪ (1-1)

• fTx means a row vector of constants f multiplying a column vector of
variables x. In other words,

fTx = f(1)x(1) + f(2)x(2) + ... + f(n)x(n),

where n is the length of f.

• A x ≤ b represents linear inequalities. A is a k-by-n matrix, where k is
the number of inequalities and n is the number of variables (size of x).
b is a vector of length k. For more information, see “Linear Inequality
Constraints” on page 2-36.

• Aeq x = beq represents linear equalities. Aeq is an m-by-n matrix, where
m is the number of equalities and n is the number of variables (size of x).
beq is a vector of length m. For more information, see “Linear Equality
Constraints” on page 2-37.

• lb ≤ x ≤ ub means each element in the vector x must be greater than the
corresponding element of lb, and must be smaller than the corresponding
element of ub. For more information, see “Bound Constraints” on page 2-35.

The syntax of the linprog solver, as shown in its function reference page, is

[x fval] = linprog(f,A,b,Aeq,beq,lb,ub);

The inputs to the linprog solver are the matrices and vectors in Equation 1-1.

Combine Variables Into One Vector
There are 16 variables in the equations of “Model Description” on page 1-13.
Put these variables into one vector. The name of the vector of variables is x
in Equation 1-1. Decide on an order, and construct the components of x out
of the variables.

The following code constructs the vector using a cell array of strings. Each
string is the name of a variable.

variables = {'I1','I2','HE1','HE2','LE1','LE2','C','BF1',...
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'BF2','HPS','MPS','LPS','P1','P2','PP','EP'};
N = length(variables);
% create variables for indexing
for v = 1:N

eval([variables{v},' = ', num2str(v),';']);
end

Executing these commands creates the following named variables in your
workspace:

These named variables represent index numbers for the components of x. You
do not have to create named variables. The video Optimization Modeling
2 shows how to solve the problem simply using the index numbers of the
components of x.
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Write Bound Constraints
There are four variables with lower bounds, and six with upper bounds in the
equations of “Model Description” on page 1-13. The lower bounds:

P1 ≥ 2500
P2 ≥ 3000
MPS ≥ 271,536
LPS ≥ 100,623.

Also, all the variables are positive, which means they have a lower bound
of zero.

Create the lower bound vector lb as a vector of 0, then add the four other
lower bounds.

lb = zeros(size(variables));
lb([P1,P2,MPS,LPS]) = ...

[2500,3000,271536,100623];

The variables with upper bounds are:

P1 ≤ 6250
P2 ≤ 9000
I1 ≤ 192,000
I2 ≤ 244,000
C ≤ 62,000
LE2 ≤ 142000.

Create the upper bound vector as a vector of Inf, then add the six upper
bounds.

ub = Inf(size(variables));
ub([P1,P2,I1,I2,C,LE2]) = ...

[6250,9000,192000,244000,62000,142000];

Write Linear Inequality Constraints
There are three linear inequalities in the equations of “Model Description”
on page 1-13:
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I1 - HE1 ≤ 132,000
EP + PP ≥ 12,000
P1 + P2 + PP ≥ 24,550.

In order to have the equations in the form A x≤b, put all the variables on
the left side of the inequality. All these equations already have that form.
Ensure that each inequality is in “less than” form by multiplying through
by –1 wherever appropriate:

I1 - HE1 ≤ 132,000
-EP - PP ≤ -12,000
-P1 - P2 - PP ≤ -24,550.

In your MATLAB workspace, create the A matrix as a 3-by-16 zero matrix,
corresponding to 3 linear inequalities in 16 variables. Create the b vector
with three components.

A = zeros(3,16);
A(1,I1) = 1; A(1,HE1) = -1; b(1) = 132000;
A(2,EP) = -1; A(2,PP) = -1; b(2) = -12000;
A(3,[P1,P2,PP]) = [-1,-1,-1];
b(3) = -24550;

Write Linear Equality Constraints
There are eight linear equations in the equations of “Model Description” on
page 1-13:

I2 = LE2 + HE2
LPS = LE1 + LE2 + BF2
HPS = I1 + I2 + BF1
HPS = C + MPS + LPS
I1 = LE1 + HE1 + C
MPS = HE1 + HE2 + BF1 - BF2
1359.8 I1 = 1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1
1359.8 I2 = 1267.8 HE2 + 1251.4 LE2 + 3413 P2.

In order to have the equations in the form Aeq x=beq, put all the variables on
one side of the equation. The equations become:
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LE2 + HE2 - I2 = 0
LE1 + LE2 + BF2 - LPS = 0
I1 + I2 + BF1 - HPS = 0
C + MPS + LPS - HPS = 0
LE1 + HE1 + C - I1 = 0
HE1 + HE2 + BF1 - BF2 - MPS = 0
1267.8 HE1 + 1251.4 LE1 + 192 C + 3413 P1 - 1359.8 I1 = 0
1267.8 HE2 + 1251.4 LE2 + 3413 P2 - 1359.8 I2 = 0.

Now write the Aeq matrix and beq vector corresponding to these equations. In
your MATLAB workspace, create the Aeq matrix as an 8-by-16 zero matrix,
corresponding to 8 linear equations in 16 variables. Create the beq vector
with eight components, all zero.

Aeq = zeros(8,16); beq = zeros(8,1);
Aeq(1,[LE2,HE2,I2]) = [1,1,-1];
Aeq(2,[LE1,LE2,BF2,LPS]) = [1,1,1,-1];
Aeq(3,[I1,I2,BF1,HPS]) = [1,1,1,-1];
Aeq(4,[C,MPS,LPS,HPS]) = [1,1,1,-1];
Aeq(5,[LE1,HE1,C,I1]) = [1,1,1,-1];
Aeq(6,[HE1,HE2,BF1,BF2,MPS]) = [1,1,1,-1,-1];
Aeq(7,[HE1,LE1,C,P1,I1]) = [1267.8,1251.4,192,3413,-1359.8];
Aeq(8,[HE2,LE2,P2,I2]) = [1267.8,1251.4,3413,-1359.8];

Write the Objective
The objective function is

fTx = 0.002614 HPS + 0.0239 PP + 0.009825 EP.

Write this expression as a vector f of multipliers of the x vector:

f = zeros(size(variables));
f([HPS PP EP]) = [0.002614 0.0239 0.009825];

Solve the Problem with linprog
You now have inputs required by the linprog solver. Call the solver and
print the outputs in formatted form:

[x fval] = linprog(f,A,b,Aeq,beq,lb,ub);
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for d = 1:N
fprintf('%12.2f \t%s\n',x(d),variables{d})

end
fval

The result:

Optimization terminated.
136328.74 I1
244000.00 I2
128159.00 HE1
143377.00 HE2

0.00 LE1
100623.00 LE2

8169.74 C
0.00 BF1
0.00 BF2

380328.74 HPS
271536.00 MPS
100623.00 LPS

6250.00 P1
7060.71 P2

11239.29 PP
760.71 EP

fval =
1.2703e+003

Examine the Solution
The fval output gives the smallest value of the objective function at any
feasible point.

The solution vector x is the point where the objective function has the smallest
value. Notice that:

• BF1, BF2, and LE1 are 0, their lower bounds.

• I2 is 244,000, its upper bound.

• The nonzero components of the f vector are
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- HPS — 380,328.74

- PP — 11,239.29

- EP — 760.71

The video Optimization Modeling 2 gives interpretations of these
characteristics in terms of the original problem.
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Optimization Toolbox Solvers
There are four general categories of Optimization Toolbox solvers:

• Minimizers

This group of solvers attempts to find a local minimum of the objective
function near a starting point x0. They address problems of unconstrained
optimization, linear programming, quadratic programming, and general
nonlinear programming.

• Multiobjective minimizers

This group of solvers attempts to either minimize the maximum value of
a set of functions (fminimax), or to find a location where a collection of
functions is below some prespecified values (fgoalattain).

• Equation solvers

This group of solvers attempts to find a solution to a scalar- or vector-valued
nonlinear equation f(x) = 0 near a starting point x0. Equation-solving can
be considered a form of optimization because it is equivalent to finding
the minimum norm of f(x) near x0.

• Least-Squares (curve-fitting) solvers

This group of solvers attempts to minimize a sum of squares. This type of
problem frequently arises in fitting a model to data. The solvers address
problems of finding nonnegative solutions, bounded or linearly constrained
solutions, and fitting parameterized nonlinear models to data.

For more information see “Problems Handled by Optimization Toolbox
Functions” on page 2-14. See “Optimization Decision Table” on page 2-4 for
aid in choosing among solvers for minimization.

Minimizers formulate optimization problems in the form

min ( ),
x

f x

possibly subject to constraints. f(x) is called an objective function. In general,
f(x) is a scalar function of type double, and x is a vector or scalar of type
double. However, multiobjective optimization, equation solving, and some
sum-of-squares minimizers, can have vector or matrix objective functions F(x)
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of type double. To use Optimization Toolbox solvers for maximization instead
of minimization, see “Maximizing an Objective” on page 2-31.

Write the objective function for a solver in the form of a function file or
anonymous function handle. You can supply a gradient ∇f(x) for many solvers,
and you can supply a Hessian for several solvers. See “Writing Objective
Functions” on page 2-18. Constraints have a special form, as described in
“Writing Constraints” on page 2-33.
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Choosing a Solver

In this section...

“Optimization Decision Table” on page 2-4

“Choosing the Algorithm” on page 2-7

“Problems Handled by Optimization Toolbox Functions” on page 2-14

Optimization Decision Table
The following table is designed to help you choose a solver. It does not address
multiobjective optimization or equation solving. There are more details on
all the solvers in “Problems Handled by Optimization Toolbox Functions”
on page 2-14.

Use the table as follows:

1 Identify your objective function as one of five types:

• Linear

• Quadratic

• Sum-of-squares (Least squares)

• Smooth nonlinear

• Nonsmooth

2 Identify your constraints as one of five types:

• None (unconstrained)

• Bound

• Linear (including bound)

• General smooth

• Discrete (integer)

3 Use the table to identify a relevant solver.

In this table:
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• * means relevant solvers are found in Global Optimization Toolbox
functions (licensed separately from Optimization Toolbox solvers).

• fmincon applies to most smooth objective functions with smooth
constraints. It is not listed as a preferred solver for least squares or linear
or quadratic programming because the listed solvers are usually more
efficient.

• The table has suggested functions, but it is not meant to unduly restrict
your choices. For example, fmincon can be effective on some nonsmooth
problems.

• The Global Optimization Toolbox ga function can address mixed-integer
programming problems.
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Solvers by Objective and Constraint

Objective TypeConstraint
Type Linear Quadratic Least

Squares
Smooth
nonlinear

Nonsmooth

None n/a (f = const,
or min = −∞ )

quadprog,
Information

\,
lsqcurvefit,
lsqnonlin,
Information

fminsearch,
fminunc,
Information

fminsearch, *

Bound linprog,
Information

quadprog,
Information

lsqcurvefit,
lsqlin,
lsqnonlin,
lsqnonneg,
Information

fminbnd,
fmincon,
fseminf,
Information

fminbnd, *

Linear linprog,
Information

quadprog,
Information

lsqlin,
Information

fmincon,
fseminf,
Information

*

General
smooth

fmincon,
Information

fmincon,
Information

fmincon,
Information

fmincon,
fseminf,
Information

*

Discrete intlinprog,
Information

* * * *

Note This table does not list multiobjective solvers nor equation solvers. See
“Problems Handled by Optimization Toolbox Functions” on page 2-14 for a
complete list of problems addressed by Optimization Toolbox functions.

Note Some solvers have several algorithms. For help choosing, see “Choosing
the Algorithm” on page 2-7.
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Choosing the Algorithm

• “fmincon Algorithms” on page 2-7

• “fsolve Algorithms” on page 2-8

• “fminunc Algorithms” on page 2-9

• “Least Squares Algorithms” on page 2-10

• “Linear Programming Algorithms” on page 2-11

• “Quadratic Programming Algorithms” on page 2-11

• “Large-Scale vs. Medium-Scale Algorithms” on page 2-12

• “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12

fmincon Algorithms
fmincon has four algorithm options:

• 'interior-point' (default)

• 'trust-region-reflective'

• 'sqp'

• 'active-set'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• Use the 'interior-point' algorithm first.

For help if the minimization fails, see “When the Solver Fails” on page
4-3 or “When the Solver Might Have Succeeded” on page 4-15.

• To run an optimization again to obtain more speed on small- to
medium-sized problems, try 'sqp' next, and 'active-set' last.

• Use 'trust-region-reflective' when applicable. Your problem must
have: objective function includes gradient, only bounds, or only linear
equality constraints (but not both).

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

2-7



2 Setting Up an Optimization

Reasoning Behind the Recommendations.

• 'interior-point' handles large, sparse problems, as well as small dense
problems. The algorithm satisfies bounds at all iterations, and can recover
from NaN or Inf results. It is a large-scale algorithm; see “Large-Scale
vs. Medium-Scale Algorithms” on page 2-12. The algorithm can use
special techniques for large-scale problems. For details, see “Interior-Point
Algorithm” on page 10-60.

• 'sqp' satisfies bounds at all iterations. The algorithm can recover from
NaN or Inf results. It is not a large-scale algorithm; see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-12.

• 'active-set' can take large steps, which adds speed. The algorithm
is effective on some problems with nonsmooth constraints. It is not a
large-scale algorithm; see “Large-Scale vs. Medium-Scale Algorithms”
on page 2-12.

• 'trust-region-reflective' requires you to provide a gradient, and
allows only bounds or linear equality constraints, but not both. Within
these limitations, the algorithm handles both large sparse problems
and small dense problems efficiently. It is a large-scale algorithm; see
“Large-Scale vs. Medium-Scale Algorithms” on page 2-12. The algorithm
can use special techniques to save memory usage, such as a Hessian
multiply function. For details, see “Trust-Region-Reflective Algorithm” on
page 10-57.

fsolve Algorithms
fsolve has three algorithms:

• 'trust-region-dogleg' (default)

• 'trust-region-reflective'

• 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.
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Recommendations

• Use the 'trust-region-dogleg' algorithm first.

For help if fsolve fails, see “When the Solver Fails” on page 4-3 or
“When the Solver Might Have Succeeded” on page 4-15.

• To solve equations again if you have a Jacobian multiply function,
or want to tune the internal algorithm (see “Trust-Region-Reflective
Algorithm Only” on page 10-134), try 'trust-region-reflective'.

• Try timing all the algorithms, including 'levenberg-marquardt', to find
the algorithm that works best on your problem.

Reasoning Behind the Recommendations.

• 'trust-region-dogleg' is the only algorithm that is specially designed
to solve nonlinear equations. The others attempt to minimize the sum
of squares of the function.

• The 'trust-region-reflective' algorithm is effective on sparse
problems. It can use special techniques such as a Jacobian multiply
function for large-scale problems.

fminunc Algorithms
fminunc has two algorithms:

• 'trust-region' (formerly LargeScale = 'on'), the default

• 'quasi-newton' (formerly LargeScale = 'off')

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If your objective function includes a gradient, use
'Algorithm' = 'trust-region'.

• Otherwise, use 'Algorithm' = 'quasi-newton'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3
or “When the Solver Might Have Succeeded” on page 4-15.
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Least Squares Algorithms

lsqlin. lsqlin has two algorithms:

• 'trust-region-reflective' (formerly LargeScale = 'on'), the default

• 'active-set' (formerly LargeScale = 'off')

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have no constraints or only bound constraints, use
'trust-region-reflective'.

• If you have linear constraints, use 'active-set'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3
or “When the Solver Might Have Succeeded” on page 4-15.

lsqcurvefit and lsqnonlin. lsqcurvefit and lsqnonlin have two
algorithms:

• 'trust-region-reflective' (default)

• 'levenberg-marquardt'

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have no constraints or only bound constraints, use
'trust-region-reflective'.

• If your problem is underdetermined (fewer equations than dimensions),
use 'levenberg-marquardt'.

For help if the minimization fails, see “When the Solver Fails” on page 4-3
or “When the Solver Might Have Succeeded” on page 4-15.
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Linear Programming Algorithms
linprog has three algorithms:

• 'interior-point' (formerly LargeScale = 'on'), the default

• 'active-set' (formerly LargeScale = 'off')

• 'simplex' (formerly LargeScale = 'off', Simplex = 'on')

Use optimoptions to set the Algorithm option at the command line.

Recommendations

Use the interior-point algorithm.

For help if the minimization fails, see “When the Solver Fails” on page 4-3
or “When the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

Quadratic Programming Algorithms
quadprog has three algorithms:

• 'interior-point-convex' (default)

• 'trust-region-reflective' (formerly LargeScale = 'on')

• 'active-set' (formerly LargeScale = 'off').

Use optimoptions to set the Algorithm option at the command line.

Recommendations

• If you have a convex problem, or if you don’t know whether your problem
is convex, use 'interior-point-convex'.

• If you have a nonconvex problem with only bounds, or with only linear
equalities, use 'trust-region-reflective'.

• If you have a nonconvex problem that does not satisfy the restrictions of
'trust-region-reflective', use 'active-set'.
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Recommendations

For help if the minimization fails, see “When the Solver Fails” on page 4-3
or “When the Solver Might Have Succeeded” on page 4-15.

See “Potential Inaccuracy with Interior-Point Algorithms” on page 2-12.

Large-Scale vs. Medium-Scale Algorithms
An optimization algorithm is large scale when it uses linear algebra that
does not need to store, nor operate on, full matrices. This may be done
internally by storing sparse matrices, and by using sparse linear algebra
for computations whenever possible. Furthermore, the internal algorithms
either preserve sparsity, such as a sparse Cholesky decomposition, or do not
generate matrices, such as a conjugate gradient method.

In contrast, medium-scale methods internally create full matrices and use
dense linear algebra. If a problem is sufficiently large, full matrices take up a
significant amount of memory, and the dense linear algebra may require a
long time to execute.

Don’t let the name “large scale” mislead you; you can use a large-scale
algorithm on a small problem. Furthermore, you do not need to specify any
sparse matrices to use a large-scale algorithm. Choose a medium-scale
algorithm to access extra functionality, such as additional constraint types,
or possibly for better performance.

Potential Inaccuracy with Interior-Point Algorithms
Interior-point algorithms in fmincon, quadprog, and linprog have many
good characteristics, such as low memory usage and the ability to solve large
problems quickly. However, their solutions can be slightly less accurate
than those from other algorithms. The reason for this potential inaccuracy
is that the (internally calculated) barrier function keeps iterates away from
inequality constraint boundaries.

For most practical purposes, this inaccuracy is usually quite small.

To reduce the inaccuracy, try to:
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• Rerun the solver with smaller TolX, TolFun, and possibly TolCon tolerances
(but keep the tolerances sensible.) See “Tolerances and Stopping Criteria”
on page 2-65).

• Run a different algorithm, starting from the interior-point solution. This
can fail, because some algorithms can use excessive memory or time, and
some linprog and quadprog algorithms do not accept an initial point.

For example, try to minimize the function x when bounded below by 0. Using
the fmincon interior-point algorithm:

options = optimoptions(@fmincon,'Algorithm','interior-point','Display','off
x = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x =

2.0000e-08

Using the fmincon sqp algorithm:

options.Algorithm = 'sqp';
x2 = fmincon(@(x)x,1,[],[],[],[],0,[],[],options)

x2 =

0

Similarly, solve the same problem using the linprog interior-point
algorithm:

opts = optimoptions(@linprog,'Display','off','Algorithm','interior-point');
x = linprog(1,[],[],[],[],0,[],1,opts)

x =

2.0833e-13

Using the linprog simplex algorithm:

opts.Algorithm = 'simplex';
x2 = linprog(1,[],[],[],[],0,[],1,opts)

x2 =
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0

In these cases, the interior-point algorithms are less accurate, but the
answers are quite close to the correct answer.

Problems Handled by Optimization Toolbox Functions
The following tables show the functions available for minimization, equation
solving, multiobjective optimization, and solving least-squares or data-fitting
problems.

Minimization Problems

Type Formulation Solver

Scalar minimization
min ( )

x
f x

such that lb < x < ub (x is scalar)

fminbnd

Unconstrained minimization
min ( )

x
f x

fminunc,
fminsearch

Linear programming

min
x

Tf x

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

linprog

Mixed-integer linear
programming min

x

Tf x

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub,
x(intcon) is integer-valued.

intlinprog

Quadratic programming

min
x

T Tx Hx c x
1
2

+

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

quadprog
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Minimization Problems (Continued)

Type Formulation Solver

Constrained minimization
min ( )

x
f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b,
Aeq·x = beq, lb ≤ x ≤ ub

fmincon

Semi-infinite minimization
min ( )

x
f x

such that K(x,w) ≤ 0 for all w, c(x) ≤ 0,
ceq(x) = 0, A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fseminf

Multiobjective Problems

Type Formulation Solver

Goal attainment
min

,x γ
γ

such that F(x) – w·γ ≤ goal, c(x) ≤ 0, ceq(x) = 0,
A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

fgoalattain

Minimax
min max ( )

x i
iF x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b,
Aeq·x = beq, lb ≤ x ≤ ub

fminimax
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Equation Solving Problems

Type Formulation Solver

Linear equations C·x = d, n equations, n variables \ (matrix left
division)

Nonlinear equation of one
variable

f(x) = 0 fzero

Nonlinear equations F(x) = 0, n equations, n variables fsolve

Least-Squares (Model-Fitting) Problems

Type Formulation Solver

Linear least-squares

min
x

C x d
1
2 2

2⋅ −

m equations, n variables

\ (matrix left
division)

Nonnegative
linear-least-squares

min
x

C x d
1
2 2

2⋅ −

such that x ≥ 0

lsqnonneg

Constrained
linear-least-squares

min
x

C x d
1
2 2

2⋅ −

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub

lsqlin
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Least-Squares (Model-Fitting) Problems (Continued)

Type Formulation Solver

Nonlinear least-squares

min ( ) min ( )
x x

i
i

F x F x2
2 2= ∑

such that lb ≤ x ≤ ub

lsqnonlin

Nonlinear curve fitting

min ( , )
x

F x xdata ydata− 2
2

such that lb ≤ x ≤ ub

lsqcurvefit
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Writing Objective Functions

In this section...

“Types of Objective Functions” on page 2-18

“Writing Scalar Objective Functions” on page 2-19

“Writing Vector and Matrix Objective Functions” on page 2-27

“Writing Objective Functions for Linear or Quadratic Problems” on page
2-30

“Maximizing an Objective” on page 2-31

Types of Objective Functions
Many Optimization Toolbox solvers minimize a scalar function of a
multidimensional vector. The objective function is the function the solvers
attempt to minimize. Several solvers accept vector-valued objective functions,
and some solvers use objective functions you specify by vectors or matrices.

Objective Type Solvers How to Write Objectives

Scalar fmincon

fminunc

fminbnd

fminsearch

fseminf

fzero

“Writing Scalar Objective Functions” on
page 2-19

Nonlinear least squares lsqcurvefit

lsqnonlin

Multivariable equation
solving

fsolve

Multiobjective fgoalattain

fminimax

“Writing Vector and Matrix Objective
Functions” on page 2-27
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Objective Type Solvers How to Write Objectives

Linear programming linprog

Binary integer
programming

bintprog

Linear least squares lsqlin

lsqnonneg

Quadratic programming quadprog

“Writing Objective Functions for Linear or
Quadratic Problems” on page 2-30

Writing Scalar Objective Functions

• “Function Files” on page 2-19

• “Anonymous Function Objectives” on page 2-21

• “Including Derivatives” on page 2-22

Function Files
A scalar objective function file accepts one input, say x, and returns one scalar
output, say f. The input x can be a scalar, vector, or matrix. A function file
can return more outputs (see “Including Derivatives” on page 2-22).

For example, suppose your objective is a function of three variables, x, y, and z:

f(x) = 3*(x – y)4 + 4*(x + z)2 / (1 + x2 + y2 + z2) + cosh(x – 1) + tanh(y + z).

1 Write this function as a file that accepts the vector xin = [x;y;z] and returns f:

function f = myObjective(xin)
f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+norm(xin)^2) ...

+ cosh(xin(1)-1) + tanh(xin(2)+xin(3));

2 Save it as a file named myObjective.m to a folder on your MATLAB path.

3 Check that the function evaluates correctly:

myObjective([1;2;3])
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ans =
9.2666

For information on how to include extra parameters, see “Passing Extra
Parameters” on page 2-53. For more complex examples of function files, see
“Minimization with Gradient and Hessian Sparsity Pattern” on page 6-22 or
“Minimization with Bound Constraints and Banded Preconditioner” on page
6-72.

Local Functions and Nested Functions. Functions can exist inside
other files as local functions or nested functions. Using local functions or
nested functions can lower the number of distinct files you save. Using
nested functions also lets you access extra parameters, as shown in “Nested
Functions” on page 2-55.

For example, suppose you want to minimize the myObjective.m objective
function, described in “Function Files” on page 2-19, subject to the
ellipseparabola.m constraint, described in “Nonlinear Constraints” on page
2-37. Instead of writing two files, myObjective.m and ellipseparabola.m,
write one file that contains both functions as local functions:

function [x fval] = callObjConstr(x0,options)
% Using a local function for just one file

if nargin < 2
options = optimoptions('fmincon','Algorithm','interior-point');

end

[x fval] = fmincon(@myObjective,x0,[],[],[],[],[],[], ...
@ellipseparabola,options);

function f = myObjective(xin)
f = 3*(xin(1)-xin(2))^4 + 4*(xin(1)+xin(3))^2/(1+sum(xin.^2)) ...

+ cosh(xin(1)-1) + tanh(xin(2)+xin(3));

function [c,ceq] = ellipseparabola(x)
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
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Solve the constrained minimization starting from the point [1;1;1]:

[x fval] = callObjConstr(ones(3,1))

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

x =
1.1835
0.8345

-1.6439

fval =
0.5383

Anonymous Function Objectives
Use anonymous functions to write simple objective functions. For more
information about anonymous functions, see “What Are Anonymous
Functions?” in the MATLAB Programming Fundamentals documentation.
Rosenbrock’s function is simple enough to write as an anonymous function:

anonrosen = @(x)(100*(x(2) - x(1)^2)^2 + (1-x(1))^2);

Check that anonrosen evaluates correctly at [-1 2]:

anonrosen([-1 2])

ans =
104

Minimizing anonrosen with fminunc yields the following results:

options = optimoptions(@fminunc,'Algorithm','quasi-newton');
[x fval] = fminunc(anonrosen,[-1;2],options)

Local minimum found.
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Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
1.0000
1.0000

fval =
1.2262e-10

Including Derivatives
For fmincon and fminunc, you can include gradients in the objective function.
You can also include Hessians, depending on the algorithm. The Hessian
matrix Hi,j(x) = ∂

2f/∂xi∂xj.

The following table shows which algorithms can use gradients and Hessians.

Solver Algorithm Gradient Hessian

active-set Optional No

interior-point Optional Optional separate function (see
“Hessian” on page 10-49)

sqp Optional No

fmincon

trust-region-reflective Required Optional

trust-region Required Optionalfminunc

quasi-newton Optional No

• “Benefits of Including Derivatives” on page 2-23

• “Choose Input Hessian for interior-point fmincon” on page 2-23

• “How to Include Derivatives” on page 2-24
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Benefits of Including Derivatives. If you do not provide gradients, solvers
estimate gradients via finite differences. If you provide gradients, your solver
need not perform this finite difference estimation, so can save time and be
more accurate. Furthermore, solvers use an approximate Hessian, which can
be far from the true Hessian. Providing a Hessian can yield a solution in
fewer iterations.

For constrained problems, providing a gradient has another advantage.
A solver can reach a point x such that x is feasible, but, for this x, finite
differences around x always lead to an infeasible point. Suppose further that
the objective function at an infeasible point returns a complex output, Inf,
NaN, or error. In this case, a solver can fail or halt prematurely. Providing
a gradient allows a solver to proceed. To obtain this benefit, you might also
need to include the gradient of a nonlinear constraint function, and set the
GradConstr option to 'on'. See “Nonlinear Constraints” on page 2-37.

Choose Input Hessian for interior-point fmincon. The fmincon
interior-point algorithm has many options for selecting an input Hessian.
For syntax details, see “Hessian” on page 10-49. Here are the options, along
with estimates of their relative characteristics.

Hessian Relative Memory
Usage

Relative Efficiency

'bfgs' (default) High (for large
problems)

High

'lbfgs' Low to Moderate Moderate

'fin-diff-grads' Low Moderate

'user-supplied' with
'HessMult'

Low (can depend on
your code)

Moderate

'user-supplied' with
'HessFcn'

? (depends on your code) High (depends on your
code)

Use the default 'bfgs' Hessian unless you

• Run out of memory — Try 'lbfgs' instead of 'bfgs'. If you can provide
your own gradients, try 'fin-diff-grads', and set the GradObj and
GradConstr options to 'on'.
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• Want more efficiency — Provide your own gradients and Hessian. See
“fmincon Interior-Point Algorithm with Analytic Hessian” on page 6-57 and
“Symbolic Math Toolbox Calculates Gradients and Hessians” on page 6-85.

The reason 'lbfgs' has only moderate efficiency is twofold. It has relatively
expensive Sherman-Morrison updates. And the resulting iteration step can be
somewhat inaccurate due to the 'lbfgs' limited memory.

The reason 'fin-diff-grads' and HessMult have only moderate efficiency is
that they use a conjugate gradient approach. They accurately estimate the
Hessian of the objective function, but they do not generate the most accurate
iteration step. For more information, see “fmincon Interior Point Algorithm”
on page 6-43, and its discussion of the LDL approach and the conjugate
gradient approach to solving Equation 6-53.

How to Include Derivatives.

1 Write code that returns:

• The objective function (scalar) as the first output

• The gradient (vector) as the second output

• Optionally, the Hessian (matrix) as the third output

2 Set the GradObj option to 'on' with optimoptions.

3 Optionally, set the Hessian option to 'on' or 'user-supplied'.

For the fmincon interior-point solver, set the Hessian option to
'user-supplied' and set the 'HessFcn' option to @hessianfcn, where
hessianfcn is a function that computes the Hessian of the Lagrangian.
For details, see “Hessian” on page 10-49. For an example, see “fmincon
Interior-Point Algorithm with Analytic Hessian” on page 6-57.

4 Optionally, check if your gradient function matches a finite-difference
approximation. See “Checking Validity of Gradients or Jacobians” on page
2-69.
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Tip For most flexibility, write conditionalized code. Conditionalized means
that the number of function outputs can vary, as shown in the following
example. Conditionalized code does not error depending on the value of the
GradObj or Hessian option. Unconditionalized code requires you to set these
options appropriately.

For example, consider Rosenbrock’s function

f x x x x( ) ( ) ,= −( ) + −100 12 1
2 2

1
2

which is described and plotted in “Solve a Constrained Nonlinear Problem”
on page 1-3. The gradient of f(x) is

∇f x
x x x x

x x
( ) ,=

− −( ) − −( )

−( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

400 2 1

200

2 1
2

1 1

2 1
2

and the Hessian H(x) is

H x x x x
x

( ) .= − + −
−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1200 400 2 400
400 200

1
2

2 1

1

rosenthree is an unconditionalized function that returns the Rosenbrock
function with its gradient and Hessian:

function [f g H] = rosenthree(x)
% Calculate objective f, gradient g, Hessian H
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];

rosenboth is a conditionalized function that returns whatever the solver
requires:
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function [f g H] = rosenboth(x)
% Calculate objective f
f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1 % gradient required
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];

if nargout > 2 % Hessian required
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];
end

end

nargout checks the number of arguments that a calling function specifies.
See “Find Number of Function Arguments” in the MATLAB Programming
Fundamentals documentation.

The fminunc solver, designed for unconstrained optimization, allows you
to minimize Rosenbrock’s function. Tell fminunc to use the gradient and
Hessian by setting options:

options = optimoptions(@fminunc,'GradObj','on','Hessian','on');

Run fminunc starting at [-1;2]:

[x fval] = fminunc(@rosenboth,[-1;2],options)
Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
1.0000
1.0000

fval =
1.9310e-017
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If you have a Symbolic Math Toolbox™ license, you can calculate gradients
and Hessians automatically, as described in “Symbolic Math Toolbox
Calculates Gradients and Hessians” on page 6-85.

Writing Vector and Matrix Objective Functions
Some solvers, such as fsolve and lsqcurvefit, have objective functions
that are vectors or matrices. The main difference in usage between these
types of objective functions and scalar objective functions is the way to write
their derivatives. The first-order partial derivatives of a vector-valued or
matrix-valued function is called a Jacobian; the first-order partial derivatives
of a scalar function is called a gradient.

• “Jacobians of Vector Functions” on page 2-27

• “Jacobians of Matrix Functions” on page 2-28

• “Jacobians with Matrix-Valued Independent Variables” on page 2-29

Jacobians of Vector Functions
If x is a vector of independent variables, and F(x) is a vector function, the
Jacobian J(x) is

J x
F x
xij
i

j
( )

( )
.=

∂
∂

If F has m components, and x has k components, J is an m-by-k matrix.

For example, if

F x
x x x
x x x

( )
sin

,= +
+ −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

2 3

1 2 32 3

then J(x) is

J x
x x x

x x x x x x x x x
( )

cos cos cos
=

+ −( ) + −( ) − + −
2
2 3 2 2 3 3 2 3

1 3 2

1 2 3 1 2 3 1 2 3(( )
⎡

⎣
⎢

⎤

⎦
⎥ .

The function file associated with this example is:
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function [F jacF] = vectorObjective(x)
F = [x(1)^2 + x(2)*x(3);

sin(x(1) + 2*x(2) - 3*x(3))];
if nargout > 1 % need Jacobian

jacF = [2*x(1),x(3),x(2);
cos(x(1)+2*x(2)-3*x(3)),2*cos(x(1)+2*x(2)-3*x(3)), ...
-3*cos(x(1)+2*x(2)-3*x(3))];

end

Jacobians of Matrix Functions
The Jacobian of a matrix F(x) is defined by changing the matrix to a vector,
column by column. For example, rewrite the matrix

F
F F
F F
F F

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 12

21 22

31 32

as a vector f:

f

F
F
F
F
F
F

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

11

21

31

12

22

32

.

The Jacobian of F is as the Jacobian of f,

J
f
xij

i

j
=
∂
∂

.

If F is an m-by-n matrix, and x is a k-vector, the Jacobian is an mn-by-k
matrix.

For example, if
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F x
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then the Jacobian of F is
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Jacobians with Matrix-Valued Independent Variables
If x is a matrix, define the Jacobian of F(x) by changing the matrix x to a
vector, column by column. For example, if

X
x x
x x

=
⎡

⎣
⎢

⎤

⎦
⎥

11 12

21 22
,

then the gradient is defined in terms of the vector

x
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With

F
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and with f the vector form of F as above, the Jacobian of F(X) is defined as the
Jacobian of f(x):
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J
f
xij
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So, for example,
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 and ..

If F is an m-by-n matrix and x is a j-by-k matrix, then the Jacobian is an
mn-by-jk matrix.

Writing Objective Functions for Linear or Quadratic
Problems
The following solvers handle linear or quadratic objective functions:

• linprog and intlinprog: minimize

f'x = f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input the vector f for the objective. See the examples in “Linear
Programming and Mixed-Integer Linear Programming”.

• lsqlin and lsqnonneg: minimize

Cx - d .

Input the matrix C and the vector d for the objective. See “Linear Least
Squares with Bound Constraints” on page 6-219.

• quadprog: minimize

1/2 * x'Hx + f'x
= 1/2 * (x(1)*H(1,1)*x(1) + 2*x(1)*H(1,2)*x(2) +...
+ x(n)*H(n,n)*x(n)) + f(1)*x(1) + f(2)*x(2) +...+ f(n)*x(n).

Input both the vector f and the symmetric matrix H for the objective. See
“Quadratic Programming”.

2-30



Writing Objective Functions

Maximizing an Objective
All solvers attempt to minimize an objective function. If you have a
maximization problem, that is, a problem of the form

max ( ),
x

f x

then define g(x) = –f(x), and minimize g.

For example, to find the maximum of tan(cos(x)) near x = 5, evaluate:

[x fval] = fminunc(@(x)-tan(cos(x)),5)
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

x =
6.2832

fval =
-1.5574

The maximum is 1.5574 (the negative of the reported fval), and occurs at
x = 6.2832. This answer is correct since, to five digits, the maximum is
tan(1) = 1.5574, which occurs at x = 2π = 6.2832.
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Matrix Arguments
Solvers accept matrix initial point x0, where matrix means an array of any
size. They also accept matrix bounds lb and ub. Here’s how solvers handle
matrix arguments.

• Internally, solvers convert matrix arguments into vectors before processing.
For example, x0 becomes x0(:). For an explanation of this syntax, see the
A(:) entry in colon.

• For output, solvers reshape the solution x to the same size as the input x0.

• When x0 is a matrix, solvers pass x as a matrix of the same size as x0 to
both the objective function and to any nonlinear constraint function.

• Linear constraints, though, take x in vector form, x(:). In other words, a
linear constraint of the form

A*x b or Aeq*x = beq

takes x as a vector, not a matrix. Ensure that your matrix A or Aeq has the
same number of columns as x0 has elements, or the solver will error.
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Writing Constraints

In this section...

“Types of Constraints” on page 2-33

“Iterations Can Violate Constraints” on page 2-34

“Bound Constraints” on page 2-35

“Linear Inequality Constraints” on page 2-36

“Linear Equality Constraints” on page 2-37

“Nonlinear Constraints” on page 2-37

“Or Instead of And Constraints” on page 2-41

“How to Use All Types of Constraints” on page 2-46

Types of Constraints
Optimization Toolbox solvers have special forms for constraints:

• “Bound Constraints” on page 2-35 — Lower and upper bounds on individual
components: x ≥ l and x ≤ u.

• “Linear Inequality Constraints” on page 2-36 — A·x ≤ b. A is an m-by-n
matrix, which represents m constraints for an n-dimensional vector x. b is
m-dimensional.

• “Linear Equality Constraints” on page 2-37 — Aeq·x = beq. Equality
constraints have the same form as inequality constraints.

• “Nonlinear Constraints” on page 2-37 — c(x) ≤ 0 and ceq(x) = 0. Both c and
ceq are scalars or vectors representing several constraints.

Optimization Toolbox functions assume that inequality constraints are of
the form ci(x) ≤ 0 or A x ≤ b. Express greater-than constraints as less-than
constraints by multiplying them by –1. For example, a constraint of the form
ci(x) ≥ 0 is equivalent to the constraint –ci(x) ≤ 0. A constraint of the form
A·x ≥ b is equivalent to the constraint –A·x ≤ –b. For more information, see
“Linear Inequality Constraints” on page 2-36 and “Nonlinear Constraints”
on page 2-37.
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You can sometimes write constraints in several ways. For best results, use
the lowest numbered constraints possible:

1 Bounds

2 Linear equalities

3 Linear inequalities

4 Nonlinear equalities

5 Nonlinear inequalities

For example, with a constraint 5 x ≤ 20, use a bound x ≤ 4 instead of a linear
inequality or nonlinear inequality.

For information on how to pass extra parameters to constraint functions, see
“Passing Extra Parameters” on page 2-53.

Iterations Can Violate Constraints
Be careful when writing your objective and constraint functions. Intermediate
iterations can lead to points that are infeasible (do not satisfy constraints).
If you write objective or constraint functions that assume feasibility, these
functions can error or give unexpected results.

For example, if you take a square root or logarithm of x, and x < 0, the result
is not real. You can try to avoid this error by setting 0 as a lower bound on x.
Nevertheless, an intermediate iteration can violate this bound.

Algorithms That Satisfy Bound Constraints
Some solver algorithms satisfy bound constraints at every iteration:

• fmincon interior-point, sqp, and trust-region-reflective algorithms

• lsqcurvefit trust-region-reflective algorithm

• lsqnonlin trust-region-reflective algorithm

• fminbnd
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Note If you set a lower bound equal to an upper bound, iterations can violate
these constraints.

Solvers and Algorithms That Can Violate Bound Constraints
The following solvers and algorithms can violate bound constraints at
intermediate iterations:

• fmincon active-set algorithm

• fgoalattain solver

• fminimax solver

• fseminf solver

Bound Constraints
Lower and upper bounds limit the components of the solution x.

If you know bounds on the location of an optimum, you can obtain faster and
more reliable solutions by explicitly including these bounds in your problem
formulation.

Give bounds as vectors with the same length as x, or as matrices with the
same number of elements as x.

• If a particular component has no lower bound, use -Inf as the bound;
similarly, use Inf if a component has no upper bound.

• If you have only bounds of one type (upper or lower), you do not need to
write the other type. For example, if you have no upper bounds, you do
not need to supply a vector of Infs.

• If only the first m out of n components have bounds, then you need only
supply a vector of length m containing bounds. However, this shortcut
causes solvers to throw a warning.

For example, suppose your bounds are:
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x3 ≥ 8
x2 ≤ 3.

Write the constraint vectors as

l = [-Inf; -Inf; 8]
u = [Inf; 3] (throws a warning) or u = [Inf; 3; Inf].

Tip Use Inf or -Inf instead of a large, arbitrary bound to lower memory
usage and increase solver speed. See “Use Inf Instead of a Large, Arbitrary
Bound” on page 4-12.

You need not give gradients for bound constraints; solvers calculate them
automatically. Bounds do not affect Hessians.

For a more complex example of bounds, see “Set Up a Linear Program” on
page 1-13.

Linear Inequality Constraints
Linear inequality constraints have the form A·x ≤ b. When A is m-by-n, there
are m constraints on a variable x with n components. You supply the m-by-n
matrix A and the m-component vector b.

Even if you pass an initial point x0 as a matrix, solvers pass the current
point x as a column vector to linear constraints. See “Matrix Arguments”
on page 2-32.

For example, suppose that you have the following linear inequalities as
constraints:

x1 + x3 ≤ 4,
2x2 – x3 ≥ –2,
x1 – x2 + x3 – x4 ≥ 9.

Here m = 3 and n = 4.

Write these using the following matrix A and vector b:
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A

b

= −
− −
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,

.

Notice that the “greater than” inequalities were first multiplied by –1 in order
to get them into “less than” inequality form. In MATLAB syntax:

A = [1 0 1 0;
0 -2 1 0;
-1 1 -1 1];

b = [4;2;-9];

You do not need to give gradients for linear constraints; solvers calculate
them automatically. Linear constraints do not affect Hessians.

For a more complex example of linear constraints, see “Set Up a Linear
Program” on page 1-13.

Linear Equality Constraints
Linear equalities have the form Aeq·x = beq, which represents m equations
with n-component vector x. You supply the m-by-n matrix Aeq and the
m-component vector beq.

You do not need to give gradients for linear constraints; solvers calculate them
automatically. Linear constraints do not affect Hessians. The form of this type
of constraint is the same as for “Linear Inequality Constraints” on page 2-36.

Nonlinear Constraints
Nonlinear inequality constraints have the form c(x) ≤ 0, where c is a vector of
constraints, one component for each constraint. Similarly, nonlinear equality
constraints are of the form ceq(x) = 0.
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Note Nonlinear constraint functions must return both c and ceq, the
inequality and equality constraint functions, even if they do not both exist.
Return empty [] for a nonexistent constraint.

For example, suppose that you have the following inequalities as constraints:

x x

x x

1
2

2
2

2 1
2

9 4
1

1

+ ≤

≥ −

,

.

Write these constraints in a function file as follows:

function [c,ceq]=ellipseparabola(x)
c(1) = (x(1)^2)/9 + (x(2)^2)/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];
end

ellipseparabola returns empty [] for ceq, the nonlinear equality function.
Also, both inequalities were put into ≤ 0 form.

Including Gradients in Constraint Functions
If you provide gradients for c and ceq, your solver can run faster and give
more reliable results.

Providing a gradient has another advantage. A solver can reach a point x
such that x is feasible, but finite differences around x always lead to an
infeasible point. In this case, a solver can fail or halt prematurely. Providing
a gradient allows a solver to proceed.

To include gradient information, write a conditionalized function as follows:

function [c,ceq,gradc,gradceq]=ellipseparabola(x)
c(1) = x(1)^2/9 + x(2)^2/4 - 1;
c(2) = x(1)^2 - x(2) - 1;
ceq = [];

if nargout > 2
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gradc = [2*x(1)/9, 2*x(1); ...
x(2)/2, -1];

gradceq = [];
end

See “Writing Scalar Objective Functions” on page 2-19 for information on
conditionalized functions. The gradient matrix has the form

gradci, j = [∂c(j)/∂xi].

The first column of the gradient matrix is associated with c(1), and the second
column is associated with c(2). This is the transpose of the form of Jacobians.

To have a solver use gradients of nonlinear constraints, indicate that they
exist by using optimoptions:

options=optimoptions(@fmincon,'GradConstr','on');

Make sure to pass the options structure to your solver:

[x,fval] = fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub, ...
@ellipseparabola,options)

If you have a Symbolic Math Toolbox license, you can calculate gradients and
Hessians automatically, as described in “Symbolic Math Toolbox Calculates
Gradients and Hessians” on page 6-85.

Anonymous Nonlinear Constraint Functions
For information on anonymous objective functions, see “Anonymous Function
Objectives” on page 2-21.

Nonlinear constraint functions must return two outputs. The first output
corresponds to nonlinear inequalities, and the second corresponds to nonlinear
equalities.

Anonymous functions return just one output. So how can you write an
anonymous function as a nonlinear constraint?

The deal function distributes multiple outputs. For example, suppose your
nonlinear inequalities are
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Suppose that your nonlinear equality is

x2 = tanh(x1).

Write a nonlinear constraint function as follows:

c = @(x)[x(1)^2/9 + x(2)^2/4 - 1;
x(1)^2 - x(2) - 1];

ceq = @(x)tanh(x(1)) - x(2);
nonlinfcn = @(x)deal(c(x),ceq(x));

To minimize the function cosh(x1) + sinh(x2) subject to the constraints in
nonlinfcn, use fmincon:

obj = @(x)cosh(x(1))+sinh(x(2));
opts = optimoptions(@fmincon,'Algorithm','sqp');
z = fmincon(obj,[0;0],[],[],[],[],[],[],nonlinfcn,opts)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

z =
-0.6530
-0.5737

To check how well the resulting point z satisfies the constraints, use
nonlinfcn:

[cout,ceqout] = nonlinfcn(z)

cout =
-0.8704
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0

ceqout =
1.1102e-016

z indeed satisfies all the constraints to within the default value of the TolCon
constraint tolerance, 1e-6.

Or Instead of And Constraints
In general, solvers takes constraints with an implicit AND:

constraint 1 AND constraint 2 AND constraint 3 are all satisfied.

However, sometimes you want an OR:

constraint 1 OR constraint 2 OR constraint 3 is satisfied.

These formulations are not logically equivalent, and there is generally no way
to express OR constraints in terms of AND constraints.

Tip Fortunately, nonlinear constraints are extremely flexible. You get
OR constraints simply by setting the nonlinear constraint function to the
minimum of the constraint functions.

The reason that you can set the minimum as the constraint is due to the
nature of “Nonlinear Constraints” on page 2-37: you give them as a set of
functions that must be negative at a feasible point. If your constraints are

F1(x) ≤ 0 OR F2(x) ≤ 0 OR F3(x) ≤ 0,

then set the nonlinear inequality constraint function c(x) as:

c(x) = min(F1(x),F2(x),F3(x)).

c(x) is not smooth, which is a general requirement for constraint functions,
due to the minimum. Nevertheless, the method often works.
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Note You cannot use the usual bounds and linear constraints in an OR
constraint. Instead, convert your bounds and linear constraints to nonlinear
constraint functions, as in this example.

For example, suppose your feasible region is the L-shaped region: x is in
the rectangle –1 ≤ x(1) ≤ 1, 0 ≤ x(2) ≤ 1 OR x is in the rectangle 0 ≤ x(1) ≤ 1,
–1 ≤ x(2) ≤ 1.

Code for creating the figure

% Write the x and y coordinates of the figure, clockwise from (0,0)
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x = [0,-1,-1,1,1,0,0];
y = [0,0,1,1,-1,-1,0];
plot(x,y)
xlim([-1.2 1.2])
ylim([-1.2 1.2])
axis equal

To represent a rectangle as a nonlinear constraint, instead of as bound
constraints, construct a function that is negative inside the rectangle
a ≤ x(1) ≤ b, c ≤ x(2) ≤ d:

function cout = rectconstr(x,a,b,c,d)
% Negative when x is in the rectangle [a,b][c,d]
% First check that a,b,c,d are in the correct order

if (b <= a) || (d <= c)
error('Give a rectangle a < b, c < d')

end

cout = max([(x(1)-b),(x(2)-d),(a-x(1)),(c-x(2))]);

Following the prescription of using the minimum of nonlinear constraint
functions, for the L-shaped region, the nonlinear constraint function is:

function [c,ceq] = rectconstrfcn(x)

ceq = []; % no equality constraint
F(1) = rectconstr(x,-1,1,0,1); % one rectangle
F(2) = rectconstr(x,0,1,-1,1); % another rectangle
c = min(F); % for OR constraints
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Code for creating the figure

Plot rectconstrfcn over the region max|x| ≤ 2 for a = –1, b = 1, c = 0, d = 1:

[xx,yy] = meshgrid(-2:.1:2);
x = [xx(:),yy(:)]; % one row per point

z = zeros(length(x),1); % allocate
for ii = 1:length(x)

[z(ii),~] = rectconstrfcn(x(ii,:));
end

z = reshape(z,size(xx));
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surf(xx,yy,z)
colorbar
axis equal
xlabel('x');ylabel('y')
view(0,90)

Suppose your objective function is

fun = @(x)exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 +
4*x(1)*x(2) + 2*x(2) + 1);

Minimize fun over the L-shaped region:

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x0 = [-.5,.6]; % an arbitrary guess
[xsol,fval,eflag,output] = fmincon(fun,x0,[],[],[],[],[],[],@rectconstrfcn,

xsol =

0.4998 -0.9996

fval =

2.4649e-07

eflag =

1

output =

iterations: 17
funcCount: 59

constrviolation: 0
stepsize: 1.8763e-04

algorithm: 'interior-point'
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firstorderopt: 4.9302e-07
cgiterations: 0

message: 'Local minimum found that satisfies the constraints.

Optimization complet...'

Clearly, the solution xsol is inside the L-shaped region. The exit flag is 1,
indicating that xsol is a local minimum.

How to Use All Types of Constraints
This section contains an example of a nonlinear minimization problem with
all possible types of constraints. The objective function is in the local function
myobj(x). The nonlinear constraints are in the local function myconstr(x).
This example does not use gradients.

function [x fval exitflag] = fullexample
x0 = [1; 4; 5; 2; 5];
lb = [-Inf; -Inf; 0; -Inf; 1];
ub = [ Inf; Inf; 20; Inf; Inf];
Aeq = [1 -0.3 0 0 0];
beq = 0;
A = [0 0 0 -1 0.1

0 0 0 1 -0.5
0 0 -1 0 0.9];

b = [0; 0; 0];
opts = optimoptions(@fmincon,'Algorithm','sqp');

[x,fval,exitflag]=fmincon(@myobj,x0,A,b,Aeq,beq,lb,ub,...
@myconstr,opts)

%---------------------------------------------------------
function f = myobj(x)

f = 6*x(2)*x(5) + 7*x(1)*x(3) + 3*x(2)^2;

%---------------------------------------------------------
function [c, ceq] = myconstr(x)

c = [x(1) - 0.2*x(2)*x(5) - 71
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0.9*x(3) - x(4)^2 - 67];
ceq = 3*x(2)^2*x(5) + 3*x(1)^2*x(3) - 20.875;

Calling fullexample produces the following display in the Command Window:

[x fval exitflag] = fullexample;

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

x =

0.6114

2.0380

1.3948

0.1572

1.5498

fval =

37.3806

exitflag =

1
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Objective and Nonlinear Constraints in the Same Function
This example shows how to avoid calling a function twice when it computes
values for both objective and constraints.

You typically use such a function in a simulation. Solvers such as fmincon
evaluate the objective and nonlinear constraint functions separately. This
evaluation is wasteful when you use the same calculation for both results.

To avoid wasting time, have your calculation use a nested function to evaluate
the objective and constraint functions only when needed, by retaining the
values of time-consuming calculations. Using a nested function avoids using
global variables, yet lets intermediate results be retained and shared between
the objective and constraint functions.

Step 1. Function that computes objective and constraints.

For example, suppose computeall is the expensive (time-consuming) function
called by both the objective function and by the nonlinear constraint functions.
Suppose you want to use fmincon as your optimizer.

Write a function that computes a portion of Rosenbrock’s function f1 and a
nonlinear constraint c1 that keeps the solution in a disk of radius 1 around
the origin. Rosenbrock’s function is

f x x x x( ) ( ) ,= −( ) + −100 12 1
2 2

1
2

which has a unique minimum value of 0 at (1,1). See “Solve a Constrained
Nonlinear Problem” on page 1-3.

In this example there is no nonlinear equality constraint, so ceq1 = []. Add
a pause(1) statement to simulate an expensive computation.

function [f1,c1,ceq1] = computeall(x)
ceq1 = [];
c1 = norm(x)^2 - 1;
f1 = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;
pause(1) % simulate expensive computation

end
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Save computeall.m as a file on your MATLAB path.

Step 2. Embed function in nested function that keeps recent values.

Suppose the objective function is

y = 100(x2 – x1
2)2 + (1 – x1)

2

+ 20*(x3 – x4
2)2 + 5*(1 – x4)

2.

computeall returns the first part of the objective function. Embed the call
to computeall in a nested function:

function [x,f,eflag,outpt] = runobjconstr(x0,opts)

if nargin == 1 % No options supplied
opts = [];

end

xLast = []; % Last place computeall was called
myf = []; % Use for objective at xLast
myc = []; % Use for nonlinear inequality constraint
myceq = []; % Use for nonlinear equality constraint

fun = @objfun; % the objective function, nested below
cfun = @constr; % the constraint function, nested below

% Call fmincon
[x,f,eflag,outpt] = fmincon(fun,x0,[],[],[],[],[],[],cfun,opts);

function y = objfun(x)
if ~isequal(x,xLast) % Check if computation is necessary

[myf,myc,myceq] = computeall(x);
xLast = x;

end
% Now compute objective function
y = myf + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;

end

function [c,ceq] = constr(x)
if ~isequal(x,xLast) % Check if computation is necessary
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[myf,myc,myceq] = computeall(x);
xLast = x;

end
% Now compute constraint functions
c = myc; % In this case, the computation is trivial
ceq = myceq;

end

end

Save the nested function as a file named runobjconstr.m on your MATLAB
path.

Step 3. Time to run with nested function.

Run the file, timing the call with tic and toc.

opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x0 = [-1,1,1,2];
tic
[x,fval,exitflag,output] = runobjconstr(x0,opts);
toc

Elapsed time is 203.797275 seconds.

Step 4. Time to run without nested function.

Compare the times to run the solver with and without the nested function.
For the run without the nested function, save myrosen2.m as the objective
function file, and constr.m as the constraint:

function y = myrosen2(x)
f1 = computeall(x); % get first part of objective
y = f1 + 20*(x(3) - x(4)^2)^2 + 5*(1 - x(4))^2;

end

function [c,ceq] = constr(x)
[~,c,ceq] = computeall(x);

end

Run fmincon, timing the call with tic and toc.
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tic
[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...

[],[],[],[],[],[],@constr,opts);
toc

Elapsed time is 406.771978 seconds.

The solver takes twice as long as before, because it evaluates the objective
and constraint separately.

Step 5. Save computing time with parallel computing.

If you have a Parallel Computing Toolbox license, you can save even more
time by setting the UseParallel option to true.

parpool

Starting parallel pool (parpool) using the 'local' profile ... connected to

ans =

Pool with properties:

Connected: true
NumWorkers: 4

Cluster: local
AttachedFiles: {}

IdleTimeout: 30 minute(s) (30 minutes remaining)
SpmdEnabled: true

opts = optimoptions(opts,'UseParallel',true);
tic
[x,fval,exitflag,output] = runobjconstr(x0,opts);
toc

Elapsed time is 97.528110 seconds.

In this case, enabling parallel computing cuts the computational time in half.

Compare the runs with parallel computing, with and without a nested
function:
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tic
[x,fval,exitflag,output] = fmincon(@myrosen2,x0,...

[],[],[],[],[],[],@constr,opts);
toc

Elapsed time is 188.985178 seconds.

In this example, computing in parallel but not nested takes about the same
time as computing nested but not parallel. Computing both nested and
parallel takes half the time of using either alone.

Related
Examples

• “Solve a Constrained Nonlinear Problem” on page 1-3

Concepts • “Optimizing a Simulation or Ordinary Differential Equation” on page 4-33
• “Parallel Computing”
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Passing Extra Parameters

Extra Parameters, Fixed Variables, or Data
Sometimes objective or constraint functions have parameters in addition
to the independent variable. The extra parameters can be data, or can
represent variables that do not change during the optimization. There are
three methods of passing these parameters:

• “Anonymous Functions” on page 2-53

• “Nested Functions” on page 2-55

• “Global Variables” on page 2-56

Global variables are troublesome because they do not allow names to be
reused among functions. It is better to use one of the other two methods.

For example, suppose you want to minimize the function

f x a bx x x x x c cx x( ) /= − +( ) + + − +( )1
2

1
4 3

1
2

1 2 2
2

2
2

(2-1)

for different values of a, b, and c. Solvers accept objective functions that
depend only on a single variable (x in this case). The following sections show
how to provide the additional parameters a, b, and c. The solutions are for
parameter values a = 4, b = 2.1, and c = 4 near x0 = [0.5 0.5] using fminunc.

Anonymous Functions
To pass parameters using anonymous functions:

1 Write a file containing the following code:

function y = parameterfun(x,a,b,c)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

2 Assign values to the parameters and define a function handle f to an
anonymous function by entering the following commands at the MATLAB
prompt:
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a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
f = @(x)parameterfun(x,a,b,c)

3 Call the solver fminunc with the anonymous function:

[x,fval] = fminunc(f,x0)

The following output is displayed in the command window:

Local minimum found.

Optimization completed because the size of the gradient is less than

the default value of the function tolerance.

x =

-0.0898 0.7127

fval =

-1.0316

Note The parameters passed in the anonymous function are those that exist
at the time the anonymous function is created. Consider the example

a = 4; b = 2.1; c = 4;
f = @(x)parameterfun(x,a,b,c)

Suppose you subsequently change, a to 3 and run

[x,fval] = fminunc(f,x0)

You get the same answer as before, since parameterfun uses a = 4, the value
when f was created.

To change the parameters that are passed to the function, renew the
anonymous function by reentering it:

a = 3;
f = @(x)parameterfun(x,a,b,c)
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You can create anonymous functions of more than one argument. For
example, to use lsqcurvefit, first create a function that takes two input
arguments, x and xdata:

fh = @(x,xdata)(sin(x).*xdata +(x.^2).*cos(xdata));
x = pi; xdata = pi*[4;2;3];
fh(x, xdata)

ans =

9.8696
9.8696

-9.8696

Now call lsqcurvefit:

% Assume ydata exists
x = lsqcurvefit(fh,x,xdata,ydata)

Nested Functions
To pass the parameters for Equation 2-1 via a nested function, write a single
file that

• Accepts a, b, c, and x0 as inputs

• Contains the objective function as a nested function

• Calls fminunc

Here is the code for the function file for this example:

function [x,fval] = runnested(a,b,c,x0)
[x,fval] = fminunc(@nestedfun,x0);
% Nested function that computes the objective function

function y = nestedfun(x)
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) +...

(-c + c*x(2)^2)*x(2)^2;
end

end

The objective function is the nested function nestedfun, which has access
to the variables a, b, and c.
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To run the optimization, enter:

a = 4; b = 2.1; c = 4;% Assign parameter values
x0 = [0.5,0.5];
[x,fval] = runnested(a,b,c,x0)

The output is the same as in “Anonymous Functions” on page 2-53.

Global Variables
Global variables can be troublesome, so it is better to avoid using them. To
use global variables, declare the variables to be global in the workspace and
in the functions that use the variables.

1 Write a function file:

function y = globalfun(x)
global a b c
y = (a - b*x(1)^2 + x(1)^4/3)*x(1)^2 + x(1)*x(2) + ...

(-c + c*x(2)^2)*x(2)^2;

2 In your MATLAB workspace, define the variables and run fminunc:

global a b c;
a = 4; b = 2.1; c = 4; % Assign parameter values
x0 = [0.5,0.5];
[x,fval] = fminunc(@globalfun,x0)

The output is the same as in “Anonymous Functions” on page 2-53.

2-56



What Are Options?

What Are Options?
Options are a way of combining a set of name-value pairs. They are useful
because they allow you to:

• Tune or modify the optimization process.

• Select extra features, such as output functions and plot functions.

• Save and reuse settings.

They simplify solver syntax—you don’t have to include a lot of name-value
pairs in a call to a solver.

To see how to set and change options, see “Set and Change Options” on page
2-59.

For an overview of all options, including which solvers use each option, see
“Optimization Options Reference” on page 9-7.
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Options in Common Use: Tuning and Troubleshooting
You set or change options when the default settings do not work sufficiently
well. This can mean the solver takes to long to converge, the solver fails, or
you are unsure of the reliability of the result.

To tune your solver for improved speed or accuracy, try setting these options
first:

• “Choosing the Algorithm” on page 2-7 — Algorithm

• “Tolerances and Stopping Criteria” on page 2-65 — TolFun, TolX,
MaxFunEvals, and MaxIter

• Finite differences — FinDiffType and FinDiffRelStep

To diagnose and troubleshoot, try setting these options first:

• “Iterative Display” on page 3-17 — Display

• Function evaluation errors — FunValCheck

• “Plot Functions” on page 3-31 and “Output Functions” on page 3-37 —
PlotFcns and OutputFunction

Related
Examples

• “Improve Results”

Concepts • “Solver Outputs and Iterative Display”
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Set and Change Options
The recommended way to set options is to use the optimoptions function.
For example, to set the fmincon algorithm to sqp, set iterative display, and
set a small value of the TolCon tolerance:

options = optimoptions('fmincon',...
'Algorithm','sqp','Display','iter','TolCon',1e-12);

Note Use optimset instead of optimoptions for the fminbnd, fminsearch,
fzero, and lsqnonneg solvers. These are the solvers that do not require an
Optimization Toolbox license.

Change options as follows:

• Dot notation. For example,

options.TolX = 1e-10;

• optimoptions. For example,

options = optimoptions(options,'TolX',1e-10);

Ensure that you pass options in your solver call. For example,

[x,fval] =
fmincon(@objfun,x0,[],[],[],[],lb,ub,@nonlcon,options);

You can also set and change options using the “Optimization App” on page 5-2.
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Choose Between optimoptions and optimset
Previously, the recommended way to set options was to use optimset. Now
the general recommendation is to use optimoptions, with some caveats
listed below.

optimset still works, and it is the only way to set options for solvers that are
available without an Optimization Toolbox license: fminbnd, fminsearch,
fzero, and lsqnonneg.

Note Some other toolboxes use optimization options and require you to
pass in options created using optimset, not optimoptions. Check the
documentation for your toolboxes.

optimoptions organizes options by solver, with a more focused and
comprehensive display than optimset:

• Creates and modifies only the options that apply to a solver

• Shows your option choices and default values for a specific solver/algorithm

• Displays links for more information on solver options and other available
solver algorithms

intlinprog uses only optimoptions options.

The main difference in creating options is:

• For optimoptions, you include the solver name as the first argument.

options = optimoptions(SolverName,Name,Value,...)

• For optimset, the syntax does not include the solver name.

options = optimset(Name,Value,...)

In both cases, you can query or change options by using dot notation. See “Set
and Change Options” on page 2-59 and “View Options” on page 2-63.
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For example, compare the display of optimoptions to that of optimset.

options = optimset('GradObj','on')
options = optimoptions(@fminunc,'GradObj','on')
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View Options
You can view the value of a particular option by using dot notation. For
example,

options = optimoptions('fmincon','Algorithm','interior-point');

To view the value of the TolX tolerance:

options.TolX

ans =

1.0000e-10

You can view the value of all options, and see which ones have nondefault
values, by entering the options name:

options
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Tolerances and Stopping Criteria
The number of iterations in an optimization depends on a solver’s stopping
criteria. These criteria include several tolerances you can set. Generally, a
tolerance is a threshold which, if crossed, stops the iterations of a solver.

Set tolerances and other criteria using optimoptions as explained in “Set
and Change Options” on page 2-59.

Tip Generally set tolerances such as TolFun and TolX to be well above eps,
and usually above 1e-14. Setting small tolerances does not always result in
accurate results. Instead, a solver can fail to recognize when it has converged,
and can continue futile iterations. A tolerance value smaller than eps
effectively disables that stopping condition.

You can find the default tolerances in the “Optimization App” on page 5-2.
Some default tolerances differ for different algorithms, so set both the solver
and the algorithm.

optimoptions displays default tolerances. For example,

options = optimoptions('fmincon')
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• TolX is a lower bound on the size of a step, meaning the norm of (xi – xi+1). If
the solver attempts to take a step that is smaller than TolX, the iterations
end. TolX is sometimes used as a relative bound, meaning iterations end
when |(xi – xi+1)| < TolX*(1 + |xi|), or a similar relative measure.
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• TolFun is a lower bound on the change in the value of the objective function
during a step. If |f(xi) – f(xi+1)| < TolFun, the iterations end. TolFun
is sometimes used as a relative bound, meaning iterations end when
|f(xi) – f(xi+1)| < TolFun*(1 + |f(xi)|), or a similar relative measure.

• TolFun is also a bound on the first-order optimality measure. If the
optimality measure is less than TolFun, the iterations end. TolFun can
also be a relative bound. First-order optimality measure is defined in
“First-Order Optimality Measure” on page 3-12.

• TolCon is an upper bound on the magnitude of any constraint functions.
If a solver returns a point x with c(x) > TolCon or |ceq(x)| > TolCon, the
solver reports that the constraints are violated at x. TolCon can also be a
relative bound.

Note TolCon operates differently from other tolerances. If TolCon is not
satisfied (i.e., if the magnitude of the constraint function exceeds TolCon),
the solver attempts to continue, unless it is halted for another reason. A
solver does not halt simply because TolCon is satisfied.
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• MaxIter is a bound on the number of solver iterations. MaxFunEvals is
a bound on the number of function evaluations. Iterations and function
evaluations are discussed in “Iterations and Function Counts” on page 3-11.

There are two other tolerances that apply to particular solvers: TolPCG and
MaxPCGIter. These relate to preconditioned conjugate gradient steps. For
more information, see “Preconditioned Conjugate Gradient Method” on page
6-29.

There are several tolerances that apply only to the fmincon interior-point
algorithm. For more information, see “Interior-Point Algorithm” on page
10-60.

There are several tolerances that apply only to intlinprog. See “Some
“Integer” Solutions Are Not Integers” on page 6-167 and “Branch and Bound”
on page 6-161.
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Checking Validity of Gradients or Jacobians

In this section...

“How to Check Derivatives” on page 2-69

“Example: Checking Derivatives of Objective and Constraint Functions”
on page 2-70

Many solvers allow you to supply a function that calculates first derivatives
(gradients or Jacobians) of objective or constraint functions. You can check
whether the derivatives calculated by your function match finite-difference
approximations. This check can help you diagnose whether your derivative
function is correct.

• If a component of the gradient function is less than 1, “match” means
the absolute difference of the gradient function and the finite-difference
approximation of that component is less than 1e-6.

• Otherwise, “match” means that the relative difference is less than 1e-6.

The DerivativeCheck option causes the solver to check the supplied
derivative against a finite-difference approximation at just one point. If the
finite-difference and supplied derivatives do not match, the solver errors.
If the derivatives match to within 1e-6, the solver reports the calculated
differences, and continues iterating without further derivative checks.
Solvers check the match at a point that is a small random perturbation of the
initial point x0, modified to be within any bounds. Solvers do not include the
computations for DerivativeCheck in the function count; see “Iterations
and Function Counts” on page 3-11.

How to Check Derivatives

• At the MATLAB command line:

1 Set the GradObj, GradConstr, or Jacobian options to 'on' with
optimoptions. Make sure your objective or constraint functions supply
the appropriate derivatives.

2 Set the DerivativeCheck option to 'on'.
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• Using the Optimization app:

1 In the Problem Setup and Results pane, choose Derivatives:
Objective function: Gradient supplied or Nonlinear constraint
function: Derivatives: Gradient supplied. Make sure your objective
or constraint functions supply the appropriate derivatives.

2 In the Options pane, check User-supplied derivatives > Validate
user-supplied derivatives

Central finite differences are more accurate than the default forward finite
differences. To use central finite differences:

• At the MATLAB command line, set FinDiffType option to 'central' with
optimoptions.

• Using the Optimization app, in the Approximated derivatives pane,
set Type to central differences.

Example: Checking Derivatives of Objective and
Constraint Functions

• “Objective and Constraint Functions” on page 2-70

• “Checking Derivatives at the Command Line” on page 2-71

• “Checking Derivatives with the Optimization App” on page 2-73

Objective and Constraint Functions
Consider the problem of minimizing the Rosenbrock function within the unit
disk as described in “Solve a Constrained Nonlinear Problem” on page 1-3.
The rosenboth function calculates the objective function and its gradient:

function [f g H] = rosenboth(x)

f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];
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if nargout > 2
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];
end

end

rosenboth calculates the Hessian, too, but this example does not use the
Hessian.

The unitdisk2 function correctly calculates the constraint function and its
gradient:

function [c,ceq,gc,gceq] = unitdisk2(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];

if nargout > 2
gc = [2*x(1);2*x(2)];
gceq = [];

end

The unitdiskb function incorrectly calculates gradient of the constraint
function:

function [c ceq gc gceq] = unitdiskb(x)
c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];

if nargout > 2
gc = [x(1);x(2)]; % Gradient incorrect: off by a factor of 2
gceq = [];

end

Checking Derivatives at the Command Line

1 Set the options to use the interior-point algorithm, gradient of objective and
constraint functions, and the DerivativeCheck option:

% For reproducibility--DerivativeCheck randomly perturbs the initial point
rng(0,'twister');
options = optimoptions(@fmincon,'Algorithm','interior-point',...
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'DerivativeCheck','on','GradObj','on','GradConstr','on');

2 Solve the minimization with fmincon using the erroneous unitdiskb
constraint function:

[x fval exitflag output] = fmincon(@rosenboth,...
[-1;2],[],[],[],[],[],[],@unitdiskb,options);

____________________________________________________________
Derivative Check Information

Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.84768e-008.

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.
User-supplied constraint derivative element (2,1): 1.99838
Finite-difference constraint derivative element (2,1): 3.99675

____________________________________________________________

Error using validateFirstDerivatives
Derivative Check failed:
User-supplied and forward finite-difference derivatives
do not match within 1e-006 relative tolerance.

Error in fmincon at 805
validateFirstDerivatives(funfcn,confcn,X, ...

The constraint function does not match the calculated gradient, encouraging
you to check the function for an error.

3 Replace the unitdiskb constraint function with unitdisk2 and run the
minimization again:

[x fval exitflag output] = fmincon(@rosenboth,...
[-1;2],[],[],[],[],[],[],@unitdisk2,options);

____________________________________________________________
Derivative Check Information
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Objective function derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.28553e-008.

Nonlinear inequality constraint derivatives:
Maximum relative difference between user-supplied
and finite-difference derivatives = 1.46443e-008.

Derivative Check successfully passed.
____________________________________________________________

Local minimum found that satisfies the constraints...

Checking Derivatives with the Optimization App
To set up the example using correct derivative functions, but starting from
[0 0], using the Optimization app:

1 Launch the Optimization app by entering optimtool at the command line.

2 Set the Problem Setup and Results pane to match the following figure:
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3 Set the Options pane to match the following figure:
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4 Press the Start button under Run solver and view results.

The output screen displays
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The forward finite difference approximation is inaccurate enough near [0 0]
that the derivative check fails.

5 To use the more accurate central differences, select central differences
in the Approximated derivatives > Type pane:

6 Click Run solver and view results > Clear Results, then Start. This
time the derivative check is successful:
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The derivative check also succeeds when you select the initial point [-1 2],
or most random points.
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Current Point and Function Value
The current point and function value are the first two outputs of all
Optimization Toolbox solvers.

• The current point is the final point in the solver iterations. It is the best
point the solver found in its run.

- If you call a solver without assigning a value to the output, the default
output, ans, is the current point.

• The function value is the value of the objective function at the current point.

- The function value for least-squares solvers is the sum of squares, also
known as the residual norm.

- fgoalattain, fminimax, and fsolve return a vector function value.

- Sometimes fval or Fval denotes function value.
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Exit Flags and Exit Messages

In this section...

“Exit Flags” on page 3-3

“Exit Messages” on page 3-5

“Enhanced Exit Messages” on page 3-5

“Exit Message Options” on page 3-9

Exit Flags
When an optimization solver completes its task, it sets an exit flag. An exit
flag is an integer that is a code for the reason the solver halted its iterations.
In general:

• Positive exit flags correspond to successful outcomes.

• Negative exit flags correspond to unsuccessful outcomes.

• The zero exit flag corresponds to the solver being halted by exceeding
an iteration limit or limit on the number of function evaluations (see
“Iterations and Function Counts” on page 3-11, and also see “Tolerances
and Stopping Criteria” on page 2-65).

A table of solver outputs in the solver’s function reference section lists the
meaning of each solver’s exit flags.

Note Exit flags are not infallible guides to the quality of a solution. Many
other factors, such as tolerance settings, can affect whether a solution is
satisfactory to you. You are responsible for deciding whether a solver returns
a satisfactory answer. Sometimes a negative exit flag does not correspond to a
“bad” solution. Similarly, sometimes a positive exit flag does not correspond
to a “good” solution.

You obtain an exit flag by calling a solver with the exitflag syntax. This
syntax depends on the solver. For details, see the solver function reference
pages. For example, for fsolve, the calling syntax to obtain an exit flag is

3-3



3 Examining Results

[x,fval,exitflag] = fsolve(...)

The following example uses this syntax. Suppose you want to solve the system
of nonlinear equations

2

2

1 2

1 2

1

2

x x e

x x e

x

x

− =

− + =

−

− .

Write these equations as an anonymous function that gives a zero vector
at a solution:

myfcn = @(x)[2*x(1) - x(2) - exp(-x(1));
-x(1) + 2*x(2) - exp(-x(2))];

Call fsolve with the exitflag syntax at the initial point [-5 -5]:

[xfinal fval exitflag] = fsolve(myfcn,[-5 -5])

Equation solved.

fsolve completed because the vector of function values is near
zero as measured by the default value of the function tolerance,
and the problem appears regular as measured by the gradient.

xfinal =
0.5671 0.5671

fval =
1.0e-006 *
-0.4059
-0.4059

exitflag =
1

In the table for fsolve under “Output Arguments” on page 10-97, you find
that an exit flag value 1 means “Function converged to a solution x.” In other
words, fsolve reports myfcn is nearly zero at x = [0.5671 0.5671].
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Exit Messages
Each solver issues a message to the MATLAB command window at the end
of its iterations. This message explains briefly why the solver halted. The
message might give more detail than the exit flag.

Many examples in this documentation show exit messages. For example, see
“Minimizing at the Command Line” on page 1-10, or “Step 2: Invoke one of
the unconstrained optimization routines.” on page 6-17. The example in the
previous section, “Exit Flags” on page 3-3, shows the following exit message:

Equation solved.

fsolve completed because the vector of function values is near
zero as measured by the default value of the function tolerance,
and the problem appears regular as measured by the gradient.

This message is more informative than the exit flag. The message indicates
that the gradient is relevant. The message also states that the function
tolerance controls how near 0 the vector of function values must be for fsolve
to regard the solution as completed.

Enhanced Exit Messages
Some solvers have exit messages that contain links for more information.
There are two types of links:

• Links on words or phrases. If you click such a link, a window opens that
displays a definition of the term, or gives other information. The new
window can contain links to the Help browser documentation for more
detailed information.

• A link as the last line of the display saying <stopping criteria
details>. If you click this link, MATLAB displays more detail about the
reason the solver halted.

The fminunc solver has enhanced exit messages:

opts = optimoptions(@fminunc,'Algorithm','quasi-newton');
% 'trust-region' needs gradient
[xfinal fval exitflag] = fminunc(@sin,0,opts)
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This yields the following results:

Each of the underlined words or phrases contains a link that provides more
information.

• The <stopping criteria details> link prints the following to the
MATLAB command line:

Optimization completed: The first-order optimality measure, 0.000000e+000, is less

than the default value of options.TolFun = 1.000000e-006.

Optimization Metric User Options

relative norm(gradient) = 0.00e+000 TolFun = 1e-006 (default)

• The other links bring up a help window with term definitions. For example,
clicking the Local minimum found link opens the following window:
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Clicking the first-order optimality measure expander link brings up
the definition of first-order optimality measure for fminunc:
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The expander link is a way to obtain more information in the same window.
Clicking the first-order optimality measure expander link again
closes the definition.

• The other links open the Help Viewer.

3-8



Exit Flags and Exit Messages

Exit Message Options
Set the Display option to control the appearance of both exit messages and
iterative display. For more information, see “Iterative Display” on page 3-17.
The following table shows the effect of the various settings of the Display
option.

Output to Command WindowValue of the Display Option

Exit message Iterative Display

'none', or the synonymous 'off' None None

'final' (default for most solvers) Default None

'final-detailed' Detailed None

'iter' Default Yes

'iter-detailed' Detailed Yes

'notify' Default only if exitflag ≤ 0 None

'notify-detailed' Detailed only if exitflag ≤ 0 None

For example,

opts = optimoptions(@fminunc,'Display','iter-detailed','Algorithm','quasi-n
[xfinal fval] = fminunc(@cos,1,opts);

yields the following display:
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Iterations and Function Counts
In general, Optimization Toolbox solvers iterate to find an optimum. This
means a solver begins at an initial value x0, performs some intermediate
calculations that eventually lead to a new point x1, and then repeats the
process to find successive approximations x2, x3, ... of the local minimum.
Processing stops after some number of iterations k.

At any step, intermediate calculations may involve evaluating the objective
function and constraints, if any, at points near the current iterate xi. For
example, the solver may estimate a gradient by finite differences. At each of
these nearby points, the function count (F-count) is increased by one.

• If there are no constraints, the F-count reports the total number of
objective function evaluations.

• If there are constraints, the F-count reports only the number of points
where function evaluations took place, not the total number of evaluations
of constraint functions.

• If there are many constraints, the F-count can be significantly less than
the total number of function evaluations.

F-count is a header in the iterative display for many solvers. For an example,
see “Interpreting the Result” on page 1-11.

The F-count appears in the output structure as output.funcCount. This
enables you to access the evaluation count programmatically. For more
information on output structures, see “Output Structures” on page 3-26.

Sometimes a solver attempts a step, and rejects the attempt. The
trust-region, trust-region-reflective, and trust-region-dogleg
algorithms count these failed attempts as iterations, and report the
(unchanged) result in the iterative display. The interior-point, active-set,
and levenberg-marquardt algorithms do not count such an attempt as an
iteration, and do not report the attempt in the iterative display. All attempted
steps increase the F-count, regardless of the algorithm.
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First-Order Optimality Measure

In this section...

“What Is First-Order Optimality Measure?” on page 3-12

“Stopping Rules Related to First-Order Optimality” on page 3-12

“Unconstrained Optimality” on page 3-13

“Constrained Optimality Theory” on page 3-13

“Constrained Optimality in Solver Form” on page 3-15

What Is First-Order Optimality Measure?
First-order optimality is a measure of how close a point x is to optimal.
Most Optimization Toolbox solvers use this measure, though it has different
definitions for different algorithms. First-order optimality is a necessary
condition, but it is not a sufficient condition. In other words:

• The first-order optimality measure must be zero at a minimum.

• A point with first-order optimality equal to zero is not necessarily a
minimum.

For general information about first-order optimality, see Nocedal and Wright
[31]. For specifics about the first-order optimality measures for Optimization
Toolbox solvers, see “Unconstrained Optimality” on page 3-13, “Constrained
Optimality Theory” on page 3-13, and “Constrained Optimality in Solver
Form” on page 3-15.

Stopping Rules Related to First-Order Optimality
The TolFun tolerance relates to the first-order optimality measure. Typically,
if the first-order optimality measure is less than TolFun, solver iterations end.

Some solvers or algorithms use relative first-order optimality as a stopping
criterion. Solver iterations end if the first-order optimality measure is less
than μ times TolFun, where μ is either:

• The infinity norm (maximum) of the gradient of the objective function at x0
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• The infinity norm (maximum) of inputs to the solver, such as f or b in
linprog or H in quadprog

A relative measure attempts to account for the scale of a problem. Multiplying
an objective function by a very large or small number does not change the
stopping condition for a relative stopping criterion, but does change it for
an unscaled one.

Solvers with enhanced exit messages state, in the stopping criteria details,
when they use relative first-order optimality.

Unconstrained Optimality
For a smooth unconstrained problem,

min ( ),
x

f x

the first-order optimality measure is the infinity norm (meaning maximum
absolute value) of ∇f(x), which is:

first-order optimality measure = max ( ) ( ) .
i if x f x∇ ∇( ) = ∞

This measure of optimality is based on the familiar condition for a smooth
function to achieve a minimum: its gradient must be zero. For unconstrained
problems, when the first-order optimality measure is nearly zero, the objective
function has gradient nearly zero, so the objective function could be near a
minimum. If the first-order optimality measure is not small, the objective
function is not minimal.

Constrained Optimality Theory
This section summarizes the theory behind the definition of first-order
optimality measure for constrained problems. The definition as used in
Optimization Toolbox functions is in “Constrained Optimality in Solver Form”
on page 3-15.

For a smooth constrained problem, let g and h be vector functions representing
all inequality and equality constraints respectively (meaning bound, linear,
and nonlinear constraints):
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min ( ) ( ) , ( ) .
x

f x g x h x subject to  ≤ =0 0

The meaning of first-order optimality in this case is more complex than for
unconstrained problems. The definition is based on the Karush-Kuhn-Tucker
(KKT) conditions. The KKT conditions are analogous to the condition that
the gradient must be zero at a minimum, modified to take constraints into
account. The difference is that the KKT conditions hold for constrained
problems.

The KKT conditions use the auxiliary Lagrangian function:

L x f x g x h xg i i h i i( , ) ( ) ( ) ( )., ,  = + +∑ ∑ (3-1)

The vector λ, which is the concatenation of λg and λh, is the Lagrange
multiplier vector. Its length is the total number of constraints.

The KKT conditions are:

∇xL x( , ) , = 0 (3-2)

g i ig x i, ( ) ,= ∀0 (3-3)

g x
h x

g i

( ) ,
( ) ,

,

≤
=
≥

⎧

⎨
⎪

⎩
⎪

0
0
0 . (3-4)

Solvers do not use the three expressions in Equation 3-4 in the calculation of
optimality measure.

The optimality measure associated with Equation 3-2 is

∇ ∇ ∇ ∇x g i i h i h iL x f x g x h x( , ( ) ( ) ( ) ., , ,  = + +∑∑ (3-5)

The optimality measure associated with Equation 3-3 is
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g g x
 

( ) , (3-6)

where the norm in Equation 3-6 means infinity norm (maximum) of the

vector g i ig x, ( )
 

.

The combined optimality measure is the maximum of the values calculated
in Equation 3-5 and Equation 3-6. Solvers that accept nonlinear constraint
functions report constraint violations g(x) > 0 or |h(x)| > 0 as TolCon
tolerance violations. See “Tolerances and Stopping Criteria” on page 2-65.

Constrained Optimality in Solver Form
Most constrained toolbox solvers separate their calculation of first-order
optimality measure into bounds, linear functions, and nonlinear functions.
The measure is the maximum of the following two norms, which correspond
to Equation 3-5 and Equation 3-6:

∇ ∇x
T

ineqlin
T

eqlinL x f x A Aeq( , ( )  = + +

                       ++ +∑∑ ineqnonlin i i eqnonlin i ic x ceq x, ,( ) ( ) ,∇ ∇ (3-7)

l x x ui i lower i i i upper i− − , ,,
     

, ( ) , ( ),Ax b c xi ineqlin i i ineqno−   nnlin i, ,
 

(3-8)

where the norm of the vectors in Equation 3-7 and Equation 3-8 is the infinity
norm (maximum). The subscripts on the Lagrange multipliers correspond to
solver Lagrange multiplier structures. See “Lagrange Multiplier Structures”
on page 3-27. The summations in Equation 3-7 range over all constraints. If a
bound is ±Inf, that term is not constrained, so it is not part of the summation.

Linear Equalities Only
For some large-scale problems with only linear equalities, the first-order
optimality measure is the infinity norm of the projected gradient. In other
words, the first-order optimality measure is the size of the gradient projected
onto the null space of Aeq.
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Bounded Least-Squares and Trust-Region-Reflective Solvers
For least-squares solvers and trust-region-reflective algorithms, in problems
with bounds alone, the first-order optimality measure is the maximum over
i of |vi*gi|. Here gi is the ith component of the gradient, x is the current
point, and

v
x b b

i
i i i=
− if the negative gradient points toward bound 

ot1 hherwise.

⎧
⎨
⎩

If xi is at a bound, vi is zero. If xi is not at a bound, then at a minimizing point
the gradient gi should be zero. Therefore the first-order optimality measure
should be zero at a minimizing point.
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Iterative Display

In this section...

“Introduction” on page 3-17

“Common Headings” on page 3-18

“Function-Specific Headings” on page 3-18

Introduction
Iterative display is a table of statistics describing the calculations in each
iteration of a solver. The statistics depend on both the solver and the solver
algorithm. For more information about iterations, see “Iterations and
Function Counts” on page 3-11. The table appears in the MATLAB Command
Window when you run solvers with appropriate options.

Obtain iterative display by using optimoptions to create options with the
Display option set to 'iter' or 'iter-detailed'. For example:

options = optimoptions(@fminunc,'Display','iter','Algorithm','quasi-newton'
[x fval exitflag output] = fminunc(@sin,0,options);

First-order
Iteration Func-count f(x) Step-size optimality

0 2 0 1
1 4 -0.841471 1 0.54
2 8 -1 0.484797 0.000993
3 10 -1 1 5.62e-005
4 12 -1 1 0

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

You can also obtain iterative display by using the Optimization app. Select
Display to command window > Level of display > iterative or
iterative with detailed message.
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Iterative display is available for all solvers except:

• linprog medium-scale active-set algorithm

• lsqlin

• lsqnonneg

• quadprog trust-region-reflective and active-set algorithms

Common Headings
The following table lists some common headings of iterative display.

Heading Information Displayed

f(x) Current objective function value

First-order
optimality

First-order optimality measure (see “First-Order
Optimality Measure” on page 3-12)

Func-count or
F-count

Number of function evaluations; see “Iterations
and Function Counts” on page 3-11

Iteration or Iter Iteration number; see “Iterations and Function
Counts” on page 3-11

Norm of step Size of the current step (size is the Euclidean
norm, or 2-norm)

Function-Specific Headings
The following sections describe headings of iterative display whose meaning
is specific to the optimization function you are using:

• “fgoalattain, fmincon, fminimax, and fseminf” on page 3-19

• “fminbnd and fzero” on page 3-21
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• “fminsearch” on page 3-21

• “fminunc” on page 3-22

• “fsolve” on page 3-22

• “intlinprog” on page 3-23

• “linprog” on page 3-23

• “lsqnonlin and lsqcurvefit” on page 3-24

• “quadprog” on page 3-24

fgoalattain, fmincon, fminimax, and fseminf
The following table describes the headings specific to fgoalattain, fmincon,
fminimax, and fseminf.

fgoalattain,
fmincon,
fminimax, or
fseminf Heading

Information Displayed

Attainment factor Value of the attainment factor for fgoalattain.

CG-iterations Number of conjugate gradient iterations taken in
the current iteration (see “Preconditioned Conjugate
Gradient Method” on page 6-29).

Directional
derivative

Gradient of the objective function along the search
direction.

Feasibility Maximum constraint violation, where satisfied
inequality constraints count as 0.

Line search
steplength

Multiplicative factor that scales the search direction
(see Equation 6-46).

Max constraint Maximum violation among all constraints, both
internally constructed and user-provided; can be
negative when no constraint is binding.

Objective value Objective function value of the nonlinear
programming reformulation of the minimax problem
for fminimax.
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fgoalattain,
fmincon,
fminimax, or
fseminf Heading

Information Displayed

Procedure Hessian update procedures:

• Infeasible start point

• Hessian not updated

• Hessian modified

• Hessian modified twice

For more information, see “Updating the Hessian
Matrix” on page 6-35.

QP subproblem procedures:

• dependent — There are dependent (redundant)
equality constraints that the solver detected and
removed.

• Infeasible—The QP subproblem with linearized
constraints is infeasible.

• Overly constrained— The QP subproblem with
linearized constraints is infeasible.

• Unbounded— The QP subproblem is feasible with
large negative curvature.

• Ill-posed— The QP subproblem search direction
is too small.

• Unreliable — The QP subproblem seems to be
ill-conditioned.

Steplength Multiplicative factor that scales the search direction
(see Equation 6-46).

Trust-region
radius

Current trust-region radius.
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fminbnd and fzero
The following table describes the headings specific to fminbnd and fzero.

fminbnd or
fzero Heading

Information Displayed

Procedure Procedures for fminbnd:

• initial

• golden (golden section search)

• parabolic (parabolic interpolation)

Procedures for fzero:

• initial (initial point)

• search (search for an interval containing a zero)

• bisection

• interpolation (linear interpolation or inverse
quadratic interpolation)

x Current point for the algorithm

fminsearch
The following table describes the headings specific to fminsearch.

fminsearch
Heading

Information Displayed

min f(x) Minimum function value in the current simplex.

Procedure Simplex procedure at the current iteration. Procedures
include:

• initial simplex

• expand

• reflect

• shrink
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fminsearch
Heading

Information Displayed

• contract inside

• contract outside

For details, see “fminsearch Algorithm” on page 6-14.

fminunc
The following table describes the headings specific to fminunc.

fminunc
Heading Information Displayed

CG-iterations Number of conjugate gradient iterations taken in
the current iteration (see “Preconditioned Conjugate
Gradient Method” on page 6-29)

Step-size Multiplicative factor that scales the search direction (see
Equation 6-12)

The fminuncmedium-scale algorithm can issue a skipped update message to
the right of the First-order optimality column. This message means that
fminunc did not update its Hessian estimate, because the resulting matrix
would not have been positive definite. The message usually indicates that the
objective function is not smooth at the current point.

fsolve
The following table describes the headings specific to fsolve.

fsolve Heading Information Displayed

Directional
derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on
page 6-205
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fsolve Heading Information Displayed

Residual Residual (sum of squares) of the function

Trust-region
radius

Current trust-region radius (change in the norm of the
trust-region radius)

intlinprog
The following table describes the headings specific to intlinprog.

linprog
Heading

Information Displayed

nodes explored Cumulative number of explored nodes.

total time (s) Time in seconds since intlinprog started.

num int
solution

Number of integer feasible points found.

integer fval Objective function value of the best integer feasible point
found. This is an upper bound for the final objective
function value.

relative gap
(%)

100
1

( )
,

b a
b
−
+

where

• b is the objective function value of the best integer
feasible point.

• a is the best lower bound on the objective function
value.

linprog
The following table describes the headings specific to linprog.
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linprog
Heading

Information Displayed

Dual Infeas
A'*y+z-w-f

Dual infeasibility.

Duality Gap
x'*z+s'*w

Duality gap (see “Interior-Point Linear Programming”
on page 6-106) between the primal objective and the
dual objective. s and w appear only in this equation if
there are finite upper bounds.

Objective f'*x Current objective value.

Primal Infeas
A*x-b

Primal infeasibility.

Total Rel
Error

Total relative error, described at the end of “Main
Algorithm” on page 6-106.

lsqnonlin and lsqcurvefit
The following table describes the headings specific to lsqnonlin and
lsqcurvefit.

lsqnonlin or
lsqcurvefit
Heading

Information Displayed

Directional
derivative

Gradient of the function along the search direction

Lambda λk value defined in “Levenberg-Marquardt Method” on
page 6-205

Resnorm Value of the squared 2-norm of the residual at x

Residual Residual vector of the function

quadprog
The following table describes the headings specific to quadprog.

3-24



Iterative Display

quadprog
Heading

Information Displayed

Feasibility Maximum constraint violation, where satisfied
inequality constraints count as 0.

Total relative
error

Total relative error is a measure of infeasibility, as
defined in “Total Relative Error” on page 6-125
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Output Structures
An output structure contains information on a solver’s result. All solvers can
return an output structure. To obtain an output structure, invoke the solver
with the output structure in the calling syntax. For example, to get an output
structure from lsqnonlin, use the syntax

[x,resnorm,residual,exitflag,output] = lsqnonlin(...)

You can also obtain an output structure by running a problem using the
Optimization app. All results exported from Optimization app contain an
output structure.

The contents of the output structure are listed in each solver’s reference
pages. For example, the output structure returned by lsqnonlin contains
firstorderopt, iterations, funcCount, cgiterations, stepsize,
algorithm, and message. To access, for example, the message, enter
output.message.

Optimization app exports results in a structure. The results structure
contains the output structure. To access, for example, the number of
iterations, use the syntax optimresults.output.iterations.

You can also see the contents of an output structure by double-clicking the
output structure in the MATLAB Workspace pane.
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Lagrange Multiplier Structures
Constrained optimization involves a set of Lagrange multipliers, as described
in “First-Order Optimality Measure” on page 3-12. Solvers return estimated
Lagrange multipliers in a structure. The structure is called lambda, since the
conventional symbol for Lagrange multipliers is the Greek letter lambda (λ).
The structure separates the multipliers into the following types, called fields:

• lower, associated with lower bounds

• upper, associated with upper bounds

• eqlin, associated with linear equalities

• ineqlin, associated with linear inequalities

• eqnonlin, associated with nonlinear equalities

• ineqnonlin, associated with nonlinear inequalities

To access, for example, the nonlinear inequality field of a Lagrange multiplier
structure, enter lambda.inqnonlin. To access the third element of the
Lagrange multiplier associated with lower bounds, enter lambda.lower(3).

The content of the Lagrange multiplier structure depends on the solver.
For example, linear programming has no nonlinearities, so it does not have
eqnonlin or ineqnonlin fields. Each applicable solver’s function reference
pages contains a description of its Lagrange multiplier structure under the
heading “Outputs.”
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Hessian

In this section...

“fminunc Hessian” on page 3-28

“fmincon Hessian” on page 3-29

fminunc Hessian
The Hessian for an unconstrained problem is the matrix of second derivatives
of the objective function f:

Hessian H
f

x xij
i j

= ∂
∂ ∂

2
.

• Quasi-Newton Algorithm — fminunc returns an estimated Hessian
matrix at the solution. It computes the estimate by finite differences.

• Trust-Region Algorithm — fminunc returns a Hessian matrix at the
next-to-last iterate.

- If you supply a Hessian in the objective function, fminunc returns this
Hessian.

- If you supply a HessMult function, fminunc returns the Hinfo matrix
from the HessMult function. For more information, see “trust-region
Algorithm Only” on page 10-103.

- Otherwise, fminunc returns an approximation from a sparse finite
difference algorithm on the gradients.

This Hessian is accurate for the next-to-last iterate. However, the
next-to-last iterate might not be close to the final point.

The reason the trust-region algorithm returns the Hessian at the
next-to-last point is for efficiency. fminunc uses the Hessian internally to
compute its next step. When fminunc reaches a stopping condition, it does
not need to compute the next step, so does not compute the Hessian.

3-28



Hessian

fmincon Hessian
The Hessian for a constrained problem is the Hessian of the Lagrangian. For
an objective function f, nonlinear inequality constraint vector c, and nonlinear
equality constraint vector ceq, the Lagrangian is

L f c ceqi i
i

j j
j

= + +∑ ∑  .

The λi are Lagrange multipliers; see “First-Order Optimality Measure” on
page 3-12 and “Lagrange Multiplier Structures” on page 3-27. The Hessian
of the Lagrangian is

H L f c ceqi i
i

j j
j

= ∇ = ∇ + ∇ + ∇∑ ∑2 2 2 2  .

fmincon has four algorithms, with several options for Hessians, as described
in “fmincon Trust Region Reflective Algorithm” on page 6-26, “fmincon Active
Set Algorithm” on page 6-32, and “fmincon Interior Point Algorithm” on page
6-43. fmincon returns the following for the Hessian:

• active-set or sqp Algorithm — fmincon returns the Hessian
approximation it computes at the next-to-last iterate. fmincon computes a
quasi-Newton approximation of the Hessian matrix at the solution in the
course of its iterations. This approximation does not, in general, match the
true Hessian in every component, but only in certain subspaces. Therefore
the Hessian that fmincon returns can be inaccurate. For more details of
the active-set calculation, see “SQP Implementation” on page 6-35.

• trust-region-reflective Algorithm— fmincon returns the Hessian it
computes at the next-to-last iterate.

- If you supply a Hessian in the objective function, fmincon returns this
Hessian.

- If you supply a HessMult function, fmincon returns the Hinfo
matrix from the HessMult function. For more information, see
“Trust-Region-Reflective Algorithm” on page 10-57.

- Otherwise, fmincon returns an approximation from a sparse finite
difference algorithm on the gradients.
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This Hessian is accurate for the next-to-last iterate. However, the
next-to-last iterate might not be close to the final point.

The reason the trust-region-reflective algorithm returns the Hessian
at the next-to-last point is for efficiency. fmincon uses the Hessian
internally to compute its next step. When fmincon reaches a stopping
condition, it does not need to compute the next step, so does not compute
the Hessian.

• interior-point Algorithm

- If the Hessian option is lbfgs or fin-diff-grads, or if you supply
a Hessian multiply function (HessMult), fmincon returns [] for the
Hessian.

- If the Hessian option is bfgs (the default), fmincon returns a
quasi-Newton approximation to the Hessian at the final point. This
Hessian can be inaccurate, as in the active-set or sqp algorithm
Hessian.

- If the Hessian option is user-supplied, fmincon returns the
user-supplied Hessian at the final point.

Concepts • “Including Derivatives” on page 2-22
• “Hessian” on page 10-49
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Plot Functions

In this section...

“Plot an Optimization During Execution” on page 3-31

“Using a Plot Function” on page 3-31

Plot an Optimization During Execution
You can plot various measures of progress during the execution of a solver.
Set the PlotFcns name-value pair in optimoptions, and specify one or more
plotting functions for the solver to call at each iteration. Pass a function
handle or cell array of function handles.

There are a variety of predefined plot functions available. See:

• The PlotFcns option description in the solver function reference page

• Optimization app > Options > Plot functions

You can also use a custom-written plot function. Write a function file using
the same structure as an output function. For more information on this
structure, see “Output Function” on page 9-21.

Using a Plot Function
This example shows how to use a plot function to view the progress of the
fmincon interior-point algorithm. The problem is taken from the Getting
Started “Solve a Constrained Nonlinear Problem” on page 1-3. The first part
of the example shows how to run the optimization using the Optimization app.
The second part shows how to run the optimization from the command line.

Running the Optimization Using the Optimization App

1 Write the nonlinear objective and constraint functions, including the
derivatives:

function [f g H] = rosenboth(x)
% ROSENBOTH returns both the value y of Rosenbrock's function
% and also the value g of its gradient and H the Hessian.
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f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

if nargout > 1
g = [-400*(x(2)-x(1)^2)*x(1)-2*(1-x(1));

200*(x(2)-x(1)^2)];

if nargout > 2
H = [1200*x(1)^2-400*x(2)+2, -400*x(1);

-400*x(1), 200];
end

end

Save this file as rosenboth.m.

function [c,ceq,gc,gceq] = unitdisk2(x)
% UNITDISK2 returns the value of the constraint
% function for the disk of radius 1 centered at
% [0 0]. It also returns the gradient.

c = x(1)^2 + x(2)^2 - 1;
ceq = [ ];

if nargout > 2
gc = [2*x(1);2*x(2)];
gceq = [];

end

Save this file as unitdisk2.m.

2 Start the Optimization app by entering optimtool at the command line.

3 Set up the optimization:

• Choose the fmincon solver.

• Choose the Interior point algorithm.

• Set the objective function to @rosenboth.

• Choose Gradient supplied for the objective function derivative.

• Set the start point to [0 0].

3-32



Plot Functions

• Set the nonlinear constraint function to @unitdisk2.

• Choose Gradient supplied for the nonlinear constraint derivatives.

Your Problem Setup and Results panel should match the following figure.

4 Choose three plot functions in the Options pane: Current point, Function
value, and First order optimality.
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5 Click the Start button under Run solver and view results.

6 The output appears as follows in the Optimization app.

In addition, the following three plots appear in a separate window.
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• The “Current Point” plot graphically shows the minimizer [0.786,0.618],
which is reported as the Final point in the Run solver and view results
pane. This plot updates at each iteration, showing the intermediate
iterates.

• The “Current Function Value” plot shows the objective function value at
all iterations. This graph is nearly monotone, showing fmincon reduces
the objective function at almost every iteration.

• The “First-order Optimality” plot shows the first-order optimality measure
at all iterations.
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Running the Optimization from the Command Line

1 Write the nonlinear objective and constraint functions, including the
derivatives, as shown in “Running the Optimization Using the Optimization
App” on page 3-31.

2 Create an options structure that includes calling the three plot functions:

options = optimoptions(@fmincon,'Algorithm','interior-point',...
'GradObj','on','GradConstr','on','PlotFcns',{@optimplotx,...

@optimplotfval,@optimplotfirstorderopt});

3 Call fmincon:

x = fmincon(@rosenboth,[0 0],[],[],[],[],[],[],...
@unitdisk2,options)

4 fmincon gives the following output:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
value of the function tolerance, and constraints are satisfied
to within the default value of the constraint tolerance.

x =
0.7864 0.6177

fmincon also displays the three plot functions, shown at the end of “Running
the Optimization Using the Optimization App” on page 3-31.
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Output Functions

In this section...

“What Is an Output Function?” on page 3-37

“Example: Using Output Functions” on page 3-37

What Is an Output Function?
For some problems, you might want output from an optimization algorithm at
each iteration. For example, you might want to find the sequence of points
that the algorithm computes and plot those points. To do this, create an
output function that the optimization function calls at each iteration. See
“Output Function” on page 9-21 for details and syntax.

Generally, the solvers that can employ an output function are the ones that
can take nonlinear functions as inputs. You can determine which solvers can
have an output function by looking in the Options section of function reference
pages, or by checking whether the Output function option is available in the
Optimization app for a solver.

Example: Using Output Functions

• “What the Example Contains” on page 3-37

• “Writing the Output Function” on page 3-38

• “Writing the Example Function File” on page 3-39

• “Running the Example” on page 3-41

What the Example Contains
The following example continues the one in “Nonlinear Inequality
Constraints” on page 6-52, which calls the function fmincon at the command
line to solve a nonlinear, constrained optimization problem. The example in
this section uses a function file to call fmincon. The file also contains all the
functions needed for the example, including:

• The objective function
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• The constraint function

• An output function that records the history of points computed by the
algorithm for fmincon. At each iteration of the algorithm for fmincon,
the output function:

- Plots the current point computed by the algorithm.

- Stores the point and its corresponding objective function value in a
variable called history, and stores the current search direction in a
variable called searchdir. The search direction is a vector that points in
the direction from the current point to the next one.

The code for the file is here: “Writing the Example Function File” on page 3-39.

Writing the Output Function
You specify the output function in options, such as

options = optimoptions(@fmincon,'OutputFcn',@outfun)

where outfun is the name of the output function. When you call an
optimization function with options as an input, the optimization function
calls outfun at each iteration of its algorithm.

In general, outfun can be any MATLAB function, but in this example, it
is a nested function of the function file described in “Writing the Example
Function File” on page 3-39. The following code defines the output function:

function stop = outfun(x,optimValues,state)
stop = false;

switch state
case 'init'

hold on
case 'iter'

% Concatenate current point and objective function
% value with history. x must be a row vector.
history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];
% Concatenate current search direction with
% searchdir.
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searchdir = [searchdir;...
optimValues.searchdirection'];

plot(x(1),x(2),'o');
% Label points with iteration number.
% Add .15 to x(1) to separate label from plotted 'o'
text(x(1)+.15,x(2),num2str(optimValues.iteration));

case 'done'
hold off

otherwise
end

end

See “Using Handles to Store Function Parameters” in the MATLAB
Programming Fundamentals documentation for more information about
nested functions.

The arguments that the optimization function passes to outfun are:

• x— The point computed by the algorithm at the current iteration

• optimValues— Structure containing data from the current iteration

The example uses the following fields of optimValues:

- optimValues.iteration— Number of the current iteration

- optimValues.fval— Current objective function value

- optimValues.searchdirection— Current search direction

• state— The current state of the algorithm ('init', 'interrupt', 'iter',
or 'done')

For more information about these arguments, see “Output Function” on page
9-21.

Writing the Example Function File
To create the function file for this example:

1 Open a new file in the MATLAB Editor.

2 Copy and paste the following code into the file:
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function [history,searchdir] = runfmincon

% Set up shared variables with OUTFUN
history.x = [];
history.fval = [];
searchdir = [];

% call optimization
x0 = [-1 1];
options = optimoptions(@fmincon,'OutputFcn',@outfun,...

'Display','iter','Algorithm','active-set');
xsol = fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

function stop = outfun(x,optimValues,state)
stop = false;

switch state
case 'init'

hold on
case 'iter'
% Concatenate current point and objective function
% value with history. x must be a row vector.

history.fval = [history.fval; optimValues.fval];
history.x = [history.x; x];

% Concatenate current search direction with
% searchdir.

searchdir = [searchdir;...
optimValues.searchdirection'];

plot(x(1),x(2),'o');
% Label points with iteration number and add title.
% Add .15 to x(1) to separate label from plotted 'o'

text(x(1)+.15,x(2),...
num2str(optimValues.iteration));

title('Sequence of Points Computed by fmincon');
case 'done'

hold off
otherwise

end
end
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function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) +...

2*x(2) + 1);
end

function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);

-x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];

end
end

3 Save the file as runfmincon.m in a folder on the MATLAB path.

Running the Example
To run the example, enter:

[history searchdir] = runfmincon;

This displays the following iterative output in the Command Window.

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 1.8394 0.5 Infeasible

1 6 1.85127 -0.09197 1 0.109 0.778 start point

2 9 0.300167 9.33 1 -0.117 0.313 Hessian modified

3 12 0.529835 0.9209 1 0.12 0.232 twice

4 16 0.186965 -1.517 0.5 -0.224 0.13

5 19 0.0729085 0.3313 1 -0.121 0.054

6 22 0.0353323 -0.03303 1 -0.0542 0.0271

7 25 0.0235566 0.003184 1 -0.0271 0.00587

8 28 0.0235504 9.032e-008 1 -0.0146 8.51e-007

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.
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Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

1

2

The output history is a structure that contains two fields:

history =

x: [9x2 double]
fval: [9x1 double]

The fval field contains the objective function values corresponding to the
sequence of points computed by fmincon:

history.fval

ans =

1.8394
1.8513
0.3002
0.5298
0.1870
0.0729
0.0353
0.0236
0.0236

These are the same values displayed in the iterative output in the column
with header f(x).

The x field of history contains the sequence of points computed by the
algorithm:

history.x

ans =

-1.0000 1.0000
-1.3679 1.2500
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-5.5708 3.4699
-4.8000 2.2752
-6.7054 1.2618
-8.0679 1.0186
-9.0230 1.0532
-9.5471 1.0471
-9.5474 1.0474

This example displays a plot of this sequence of points, in which each point
is labeled by its iteration number.

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
1

1.5

2

2.5

3

3.5

0

1
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4

5678 0

Sequence of Points Computed by fmincon

1

2

3

4

5678

The optimal point occurs at the eighth iteration. Note that the last two points
in the sequence are so close that they overlap.

The second output argument, searchdir, contains the search directions for
fmincon at each iteration. The search direction is a vector pointing from the
point computed at the current iteration to the point computed at the next
iteration:

searchdir =

-0.3679 0.2500

3-43



3 Examining Results

-4.2029 2.2199
0.7708 -1.1947

-3.8108 -2.0268
-1.3625 -0.2432
-0.9552 0.0346
-0.5241 -0.0061
-0.0003 0.0003
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• “Overview of Next Steps” on page 4-2

• “When the Solver Fails” on page 4-3

• “When the Solver Might Have Succeeded” on page 4-15

• “When the Solver Succeeds” on page 4-23

• “Optimizing a Simulation or Ordinary Differential Equation” on page 4-33
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Overview of Next Steps
This topic addresses questions you might have after running a solver. The
questions include:

• Is the answer reliable?

• What can you do if the solver fails?

• Is the minimum smaller than all other minima, or only smaller than nearby
minima? (“Local vs. Global Optima” on page 4-27)

• What can you do if the solver takes too long?

The list of questions is not exhaustive. It covers common or basic problems.

You can access relevant answers from many solvers’ default exit message.
The first line of the exit message contains a link to a brief description of the
result. This description contains a link leading to documentation.
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When the Solver Fails

In this section...

“Too Many Iterations or Function Evaluations” on page 4-3

“No Feasible Point” on page 4-7

“Problem Unbounded” on page 4-9

“fsolve Could Not Solve Equation” on page 4-10

“Solver Takes Too Long” on page 4-10

Too Many Iterations or Function Evaluations
The solver stopped because it reached a limit on the number of iterations
or function evaluations before it minimized the objective to the requested
tolerance. To proceed, try one or more of the following.

“1. Enable Iterative Display” on page 4-3
“2. Relax Tolerances” on page 4-4
“3. Start the Solver From Different Points” on page 4-5
“4. Check Objective and Constraint Function Definitions” on page 4-5
“5. Center and Scale Your Problem” on page 4-5
“6. Provide Gradient or Jacobian” on page 4-6
“7. Provide Hessian” on page 4-7

1. Enable Iterative Display
Set the Display option to 'iter'. This setting shows the results of the
solver iterations.

To enable iterative display:

• Using the Optimization app, choose Level of display to be iterative or
iterative with detailed message.

• At the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.
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For an example of iterative display, see “Interpreting the Result” on page 1-11.

What to Look For in Iterative Display.

• See if the objective function (Fval or f(x) or Resnorm) decreases. Decrease
indicates progress.

• Examine constraint violation (Max constraint) to ensure that it decreases
towards 0. Decrease indicates progress.

• See if the first-order optimality decreases towards 0. Decrease indicates
progress.

• See if the Trust-region radius decreases to a small value. This decrease
indicates that the objective might not be smooth.

What to Do.

• If the solver seemed to progress:

1 Set MaxIter and/or MaxFunEvals to values larger than the defaults. You
can see the default values in the Optimization app, or in the Options
table in the solver’s function reference pages.

2 Start the solver from its last calculated point.

• If the solver is not progressing, try the other listed suggestions.

2. Relax Tolerances
If TolX or TolFun, for example, are too small, the solver might not recognize
when it has reached a minimum; it can make futile iterations indefinitely.

To change tolerances using the Optimization app, use the Stopping criteria
list at the top of the Options pane.

To change tolerances at the command line, use optimoptions as described in
“Set and Change Options” on page 2-59.

The DiffMaxChange and DiffMinChange options can affect a solver’s progress.
These options control the step size in finite differencing for derivative
estimation.
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3. Start the Solver From Different Points
See Change the Initial Point.

4. Check Objective and Constraint Function Definitions
For example, check that your objective and nonlinear constraint functions
return the correct values at some points. See Check your Objective and
Constraint Functions. Check that an infeasible point does not cause an error
in your functions; see “Iterations Can Violate Constraints” on page 2-34.

5. Center and Scale Your Problem
Solvers run more reliably when each coordinate has about the same effect on
the objective and constraint functions. Multiply your coordinate directions
with appropriate scalars to equalize the effect of each coordinate. Add
appropriate values to certain coordinates to equalize their size.

Example: Centering and Scaling. Consider minimizing
1e6*x(1)^2 + 1e-6*x(2)^2:

f = @(x) 10^6*x(1)^2 + 10^-6*x(2)^2;

Minimize f using the medium-scale fminunc algorithm:

opts = optimoptions('fminunc','Display','none','Algorithm','quasi-newton');
x = fminunc(f,[0.5;0.5],opts)

x =
0

0.5000

The result is incorrect; poor scaling interfered with obtaining a good solution.

Scale the problem. Set

D = diag([1e-3,1e3]);
fr = @(y) f(D*y);
y = fminunc(fr, [0.5;0.5], opts)

y =
0
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0 % the correct answer

Similarly, poor centering can interfere with a solution.

fc = @(z)fr([z(1)-1e6;z(2)+1e6]); % poor centering
z = fminunc(fc,[.5 .5],opts)

z =
1.0e+005 *
10.0000 -10.0000 % looks good, but...

z - [1e6 -1e6] % checking how close z is to 1e6

ans =

-0.0071 0.0078 % reveals a distance

fcc = @(w)fc([w(1)+1e6;w(2)-1e6]); % centered

w = fminunc(fcc,[.5 .5],opts)

w =
0 0 % the correct answer

6. Provide Gradient or Jacobian
If you do not provide gradients or Jacobians, solvers estimate gradients and
Jacobians by finite differences. Therefore, providing these derivatives can
save computational time, and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A
solver can reach a point x such that x is feasible, but finite differences around
x always lead to an infeasible point. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and
nonlinear constraint functions. For details of the syntax, see “Writing Scalar
Objective Functions” on page 2-19, “Writing Vector and Matrix Objective
Functions” on page 2-27, and “Nonlinear Constraints” on page 2-37.
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To check that your gradient or Jacobian function is correct, use the
DerivativeCheck option, as described in “Checking Validity of Gradients
or Jacobians” on page 2-69.

If you have a Symbolic Math Toolbox license, you can calculate gradients and
Hessians programmatically. For an example, see “Symbolic Math Toolbox
Calculates Gradients and Hessians” on page 6-85.

For examples using gradients and Jacobians, see “Minimization with
Gradient and Hessian” on page 6-20, “Nonlinear Constraints with Gradients”
on page 6-54, “Symbolic Math Toolbox Calculates Gradients and Hessians” on
page 6-85, “Nonlinear Equations with Analytic Jacobian” on page 6-257, and
“Nonlinear Equations with Jacobian” on page 6-263.

7. Provide Hessian
Solvers often run more reliably and with fewer iterations when you supply a
Hessian.

The following solvers and algorithms accept Hessians:

• fmincon interior-point. Write the Hessian as a separate function. For
an example, see “fmincon Interior-Point Algorithm with Analytic Hessian”
on page 6-57.

• fmincon trust-region-reflective. Give the Hessian as the third output
of the objective function. For an example, see “Minimization with Dense
Structured Hessian, Linear Equalities” on page 6-80.

• fminunc trust-region. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Gradient and
Hessian” on page 6-20.

If you have a Symbolic Math Toolbox license, you can calculate gradients and
Hessians programmatically. For an example, see “Symbolic Math Toolbox
Calculates Gradients and Hessians” on page 6-85.

No Feasible Point
The solver was unable to find a point satisfying all constraints to within the
TolCon constraint tolerance. To proceed, try one or more of the following.
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“1. Check Linear Constraints” on page 4-8
“2. Check Nonlinear Constraints” on page 4-8

1. Check Linear Constraints
Try finding a point that satisfies the bounds and linear constraints by solving
a linear programming problem.

1 Define a linear programming problem with an objective function that is
always zero:

f = zeros(size(x0)); % assumes x0 is the initial point

2 Solve the linear programming problem to see if there is a feasible point:

xnew = linprog(f,A,b,Aeq,beq,lb,ub);

3 If there is a feasible point xnew, use xnew as the initial point and rerun your
original problem.

4 If there is no feasible point, your problem is not well-formulated. Check the
definitions of your bounds and linear constraints.

2. Check Nonlinear Constraints
After ensuring that your bounds and linear constraints are feasible (contain a
point satisfying all constraints), check your nonlinear constraints.

• Set your objective function to zero:

@(x)0

Run your optimization with the zero objective. If you find a feasible point
xnew, set x0 = xnew and rerun your original problem.

• If you do not find a feasible point using a zero objective function, use the
zero objective function with several initial points.

- If you find a feasible point xnew, set x0 = xnew and rerun your original
problem.

- If you do not find a feasible point, try relaxing the constraints, discussed
next.
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Try relaxing your nonlinear inequality constraints, then tightening them.

1 Change the nonlinear constraint function c to return c-Δ, where Δ is a positive
number. This change makes your nonlinear constraints easier to satisfy.

2 Look for a feasible point for the new constraint function, using either your
original objective function or the zero objective function.

a If you find a feasible point,

a Reduce Δ

b Look for a feasible point for the new constraint function, starting at
the previously found point.

b If you do not find a feasible point, try increasing Δ and looking again.

If you find no feasible point, your problem might be truly infeasible, meaning
that no solution exists. Check all your constraint definitions again.

Problem Unbounded
The solver reached a point whose objective function was less than the
objective limit tolerance.

• Your problem might be truly unbounded. In other words, there is a
sequence of points xi with

lim f(xi) = –∞.

and such that all the xi satisfy the problem constraints.

• Check that your problem is formulated correctly. Solvers try to minimize
objective functions; if you want a maximum, change your objective function
to its negative. For an example, see “Maximizing an Objective” on page
2-31.

• Try scaling or centering your problem. See Center and Scale Your Problem.

• Relax the objective limit tolerance by using optimoptions to reduce the
value of the ObjectiveLimit tolerance.
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fsolve Could Not Solve Equation
fsolve can fail to solve an equation for various reasons. Here are some
suggestions for how to proceed:

1 Try Changing the Initial Point. fsolve relies on an initial point. By giving
it different initial points, you increase the chances of success.

2 Check the definition of the equation to make sure that it is smooth.
fsolve might fail to converge for equations with discontinuous gradients,
such as absolute value. fsolve can fail to converge for functions with
discontinuities.

3 Check that the equation is “square,” meaning equal dimensions for input
and output (has the same number of unknowns as values of the equation).

4 Change tolerances, especially TolFun and TolX. If you attempt to get high
accuracy by setting tolerances to very small values, fsolve can fail to
converge. If you set tolerances that are too high, fsolve can fail to solve an
equation accurately.

5 Check the problem definition. Some problems have no real solution, such
as x^2 + 1 = 0.

Solver Takes Too Long
Solvers can take excessive time for various reasons. To diagnose the reason,
use one or more of the following techniques.

1 “Enable Iterative Display” on page 4-11

2 “Enable FunValCheck” on page 4-11

3 “Use Appropriate Tolerances” on page 4-11

4 “Use a Plot Function” on page 4-12

5 “Enable DerivativeCheck” on page 4-12

6 “Use Inf Instead of a Large, Arbitrary Bound” on page 4-12

7 “Use an Output Function” on page 4-13
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8 “Use a Sparse Solver or a Multiply Function” on page 4-13

9 “Use Parallel Computing” on page 4-14

Enable Iterative Display
Set the Display option to 'iter'. This setting shows the results of the
solver iterations.

To enable iterative display:

• Using the Optimization app, choose Level of display to be iterative or
iterative with detailed message.

• At the MATLAB command line, enter

options = optimoptions('solvername','Display','iter');

Call the solver using the options structure.

For an example of iterative display, see “Interpreting the Result” on page 1-11.
For more information, see “What to Look For in Iterative Display” on page 4-4.

Enable FunValCheck
Sometimes a solver fails because an objective function or nonlinear constraint
function returns a complex value, infinity, or NaN. To halt solver iterations in
these cases, enable the FunValCheck option.

• Using the Optimization app, check the box labeled Error if user-supplied
function returns Inf, NaN, or complex in the Function value check
pane.

• At the MATLAB command line, enter

options = optimoptions('solvername','FunValCheck','on');

Call the solver using the options structure.

Use Appropriate Tolerances
Solvers can fail to converge if tolerances are too small, especially TolFun
and TolX.
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To change tolerances using the Optimization app, use the Stopping criteria
list at the top of the Options pane.

To change tolerances at the command line, use optimoptions as described in
“Set and Change Options” on page 2-59.

Use a Plot Function
You can obtain more visual or detailed information about solver iterations
using a plot function. For a list of the predefined plot functions, see Options
> Plot functions in the Optimization app. The Options section of your
solver’s function reference pages also lists the plot functions.

To use a plot function:

• Using the Optimization app, check the boxes next to each plot function
you wish to use.

• At the MATLAB command line, enter

options =
optimoptions('solvername','PlotFcns',{@plotfcn1,@plotfcn2,...});

Call the solver using the options structure.

For an example of using a plot function, see “Using a Plot Function” on page
3-31.

Enable DerivativeCheck
If you have supplied derivatives (gradients or Jacobians) to your solver,
the solver can fail to converge if the derivatives are inaccurate. For more
information about using the DerivativeCheck option, see “Checking Validity
of Gradients or Jacobians” on page 2-69.

Use Inf Instead of a Large, Arbitrary Bound
If you use a large, arbitrary bound (upper or lower), a solver can take
excessive time, or even fail to converge. However, if you set Inf or -Inf as the
bound, the solver can take less time, and might converge better.
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Why? An interior-point algorithm can set an initial point to the midpoint of
finite bounds. Or an interior-point algorithm can try to find a “central path”
midway between finite bounds. Therefore, a large, arbitrary bound can resize
those components inappropriately. In contrast, infinite bounds are ignored for
these purposes.

Minor point: Some solvers use memory for each constraint, primarily via
a constraint Hessian. Setting a bound to Inf or -Inf means there is no
constraint, so there is less memory in use, because a constraint Hessian has
lower dimension.

Use an Output Function
You can obtain detailed information about solver iterations using an output
function. Solvers call output functions at each iteration. You write output
functions using the syntax described in “Output Function” on page 9-21.

For an example of using an output function, see “Example: Using Output
Functions” on page 3-37.

Use a Sparse Solver or a Multiply Function
Large problems can cause MATLAB to run out of memory or time. Here are
some suggestions for using less memory:

• Use a large-scale algorithm if possible (see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-12). These algorithms include
trust-region-reflective, interior-point, the fminunc trust-region
algorithm, the fsolve trust-region-dogleg algorithm, and the
Levenberg-Marquardt algorithm. In contrast, the active-set,
quasi-newton, and sqp algorithms are not large-scale.

Use sparse matrices for your linear constraints.

• Use a Jacobian multiply function or Hessian multiply function. For
examples, see “Jacobian Multiply Function with Linear Least Squares” on
page 6-224, “Quadratic Minimization with Dense, Structured Hessian” on
page 6-138, and “Minimization with Dense Structured Hessian, Linear
Equalities” on page 6-80.
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Use Parallel Computing
If you have a Parallel Computing Toolbox license, your solver might run faster
using parallel computing. For more information, see “Parallel Computing”.
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When the Solver Might Have Succeeded

In this section...

“Final Point Equals Initial Point” on page 4-15

“Local Minimum Possible” on page 4-15

Final Point Equals Initial Point
The initial point seems to be a local minimum or solution because the
first-order optimality measure is close to 0. You might be unhappy with this
result, since the solver did not improve your initial point.

If you are unsure that the initial point is truly a local minimum, try:

1 Starting from different points — see Change the Initial Point.

2 Checking that your objective and constraints are defined correctly (for
example, do they return the correct values at some points?) — see Check your
Objective and Constraint Functions. Check that an infeasible point does not
cause an error in your functions; see “Iterations Can Violate Constraints”
on page 2-34.

3 Changing tolerances, such as TolFun, TolCon, and TolX — see Use
Appropriate Tolerances.

4 Scaling your problem so each coordinate has about the same effect — see
Rescale the Problem.

5 Providing gradient and Hessian information — see Provide Analytic
Gradients or Jacobian and Provide a Hessian.

Local Minimum Possible
The solver might have reached a local minimum, but cannot be certain because
the first-order optimality measure is not less than the TolFun tolerance. (To
learn more about first-order optimality measure, see “First-Order Optimality
Measure” on page 3-12.) To see if the reported solution is reliable, consider
the following suggestions.

“1. Nonsmooth Functions” on page 4-16
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“2. Rerun Starting At Final Point” on page 4-16
“3. Try a Different Algorithm” on page 4-17
“4. Change Tolerances” on page 4-19
“5. Rescale the Problem” on page 4-20
“6. Check Nearby Points” on page 4-20
“7. Change Finite Differencing Options” on page 4-20
“8. Provide Analytic Gradients or Jacobian” on page 4-21
“9. Provide a Hessian” on page 4-21

1. Nonsmooth Functions
If you try to minimize a nonsmooth function, or have nonsmooth constraints,
“Local Minimum Possible” can be the best exit message. This is because the
first-order optimality conditions do not apply at a nonsmooth point.

To satisfy yourself that the solution is adequate, try to Check Nearby Points.

2. Rerun Starting At Final Point
Restarting an optimization at the final point can lead to a solution with a
better first-order optimality measure. A better (lower) first-order optimality
measure gives you more reason to believe that the answer is reliable.

For example, consider the following minimization problem, taken from an
example (echodemo symbolic_optim_demo):

options = optimoptions('fminunc','Algorithm','quasi-newton');
funh = @(x)log(1 + (x(1) - 4/3)^2 + 3*(x(2) - (x(1)^3 - x(1)))^2);
[xfinal fval exitflag] = fminunc(funh,[-1;2],options)

Local minimum possible.

fminunc stopped because it cannot decrease the
objective function along the current search direction.

xfinal =
1.3333
1.0370

fval =
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8.5265e-014

exitflag =
5

The exit flag value of 5 indicates that the first-order optimality measure was
above the function tolerance. Run the minimization again starting from
xfinal:

[xfinal2 fval2 exitflag2] = fminunc(funh,xfinal,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

xfinal2 =
1.3333
1.0370

fval2 =
6.5281e-014

exitflag2 =
1

The local minimum is “found,” not “possible,” and the exitflag is 1, not 5.
The two solutions are virtually identical. Yet the second run has a more
satisfactory exit message, since the first-order optimality measure was low
enough: 7.5996e-007, instead of 3.9674e-006.

3. Try a Different Algorithm
Many solvers give you a choice of algorithm. Different algorithms can lead to
the use of different stopping criteria.

For example, Rerun Starting At Final Point returns exitflag 5 from the first
run. This run uses the medium-scale algorithm.

The trust-region algorithm requires a user-supplied gradient. betopt.m
contains a calculation of the objective function and gradient:
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function [f gradf] = betopt(x)

g = 1 + (x(1)-4/3)^2 + 3*(x(2) - (x(1)^3-x(1)))^2;
f = log(g);
gradf(1) = 2*(x(1)-4/3) + 6*(x(2) - (x(1)^3-x(1)))*(1-3*x(1)^2);
gradf(1) = gradf(1)/g;
gradf(2) = 6*(x(2) - (x(1)^3 -x(1)))/g;

Running the optimization using the trust-region algorithm results in a
different exitflag:

options = optimoptions('fminunc','GradObj','on');
[xfinal3 fval3 exitflag3] = fminunc(@betopt,[-1;2],options)

Local minimum possible.

fminunc stopped because the final change in function value
relative to its initial value is less than the default value
of the function tolerance.

xfinal3 =
1.3333
1.0370

fval3 =
7.6659e-012

exitflag3 =
3

The exit condition is better than the medium-scale condition, though it is still
not the best. Rerunning the algorithm from the final point produces a better
point, with extremely small first-order optimality measure:

[xfinal4 fval4 eflag4 output4] = fminunc(@betopt,xfinal3,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.
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xfinal4 =

1.3333
1.0370

fval4 =
0

eflag4 =
1

output4 =
iterations: 1
funcCount: 2

cgiterations: 1
firstorderopt: 7.5211e-011

algorithm: 'large-scale: trust-region Newton'
message: [1x498 char]

4. Change Tolerances
Sometimes tightening or loosening tolerances leads to a more satisfactory
result. For example, choose a smaller value of TolFun in the Try a Different
Algorithm section:

options = optimoptions('fminunc','TolFun',1e-8,'GradObj','on'); % default=1
[xfinal3 fval3 eflag3 output3] = fminunc(@betopt,[-1;2],options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the selected value of the function tolerance.

xfinal3 =
1.3333
1.0370

fval3 =
0
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eflag3 =
1

output3 =
iterations: 15
funcCount: 16

cgiterations: 12
firstorderopt: 7.5497e-11

algorithm: 'large-scale: trust-region Newton'
message: [1x498 char]

constrviolation: []

fminunc took one more iteration than before, arriving at a better solution.

5. Rescale the Problem
Try to have each coordinate give about the same effect on the objective and
constraint functions by scaling and centering. For examples, see Center and
Scale Your Problem.

6. Check Nearby Points
Evaluate your objective function and constraints, if they exist, at points
near the final point. If the final point is a local minimum, nearby feasible
points have larger objective function values. See Check Nearby Points for
an example.

If you have a Global Optimization Toolbox license, try running the
patternsearch solver from the final point. patternsearch examines nearby
points, and accepts all types of constraints.

7. Change Finite Differencing Options
Central finite differences are more time-consuming to evaluate, but are
much more accurate. Use central differences when your problem can have
high curvature.

To choose central differences at the command line, use optimoptions to set
'FinDiffType' to 'central', instead of the default 'forward'.
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To choose central differences in the Optimization app, set Options >
Approximated derivatives > Type to be central differences.

8. Provide Analytic Gradients or Jacobian
If you do not provide gradients or Jacobians, solvers estimate gradients and
Jacobians by finite differences. Therefore, providing these derivatives can
save computational time, and can lead to increased accuracy.

For constrained problems, providing a gradient has another advantage. A
solver can reach a point x such that x is feasible, but finite differences around
x always lead to an infeasible point. In this case, a solver can fail or halt
prematurely. Providing a gradient allows a solver to proceed.

Provide gradients or Jacobians in the files for your objective function and
nonlinear constraint functions. For details of the syntax, see “Writing Scalar
Objective Functions” on page 2-19, “Writing Vector and Matrix Objective
Functions” on page 2-27, and “Nonlinear Constraints” on page 2-37.

To check that your gradient or Jacobian function is correct, use the
DerivativeCheck option, as described in “Checking Validity of Gradients
or Jacobians” on page 2-69.

If you have a Symbolic Math Toolbox license, you can calculate gradients and
Hessians programmatically. For an example, see “Symbolic Math Toolbox
Calculates Gradients and Hessians” on page 6-85.

For examples using gradients and Jacobians, see “Minimization with
Gradient and Hessian” on page 6-20, “Nonlinear Constraints with Gradients”
on page 6-54, “Symbolic Math Toolbox Calculates Gradients and Hessians” on
page 6-85, “Nonlinear Equations with Analytic Jacobian” on page 6-257, and
“Nonlinear Equations with Jacobian” on page 6-263.

9. Provide a Hessian
Solvers often run more reliably and with fewer iterations when you supply a
Hessian.

The following solvers and algorithms accept Hessians:
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• fmincon interior-point. Write the Hessian as a separate function. For
an example, see “fmincon Interior-Point Algorithm with Analytic Hessian”
on page 6-57.

• fmincon trust-region-reflective. Give the Hessian as the third output
of the objective function. For an example, see “Minimization with Dense
Structured Hessian, Linear Equalities” on page 6-80.

• fminunc trust-region. Give the Hessian as the third output of the
objective function. For an example, see “Minimization with Gradient and
Hessian” on page 6-20.

If you have a Symbolic Math Toolbox license, you can calculate gradients and
Hessians programmatically. For an example, see “Symbolic Math Toolbox
Calculates Gradients and Hessians” on page 6-85.

The example in “Symbolic Math Toolbox Calculates Gradients and Hessians”
on page 6-85 shows fmincon taking 77 iterations without a Hessian, but only
19 iterations with a Hessian.
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When the Solver Succeeds

In this section...

“What Can Be Wrong If The Solver Succeeds?” on page 4-23

“1. Change the Initial Point” on page 4-24

“2. Check Nearby Points” on page 4-25

“3. Check your Objective and Constraint Functions” on page 4-26

“Local vs. Global Optima” on page 4-27

What Can Be Wrong If The Solver Succeeds?
A solver can report that a minimization succeeded, and yet the reported
solution can be incorrect. For a rather trivial example, consider minimizing
the function f(x) = x3 for x between –2 and 2, starting from the point 1/3:

options = optimoptions('fmincon','Algorithm','active-set');
ffun = @(x)x^3;
xfinal = fmincon(ffun,1/3,[],[],[],[],-2,2,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.

No active inequalities.

xfinal =
-1.5056e-008

The true minimum occurs at x = -2. fmincon gives this report because the
function f(x) is so flat near x = 0.

Another common problem is that a solver finds a local minimum, but you
might want a global minimum. For more information, see “Local vs. Global
Optima” on page 4-27.
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Lesson: check your results, even if the solver reports that it “found” a local
minimum, or “solved” an equation.

This section gives techniques for verifying results.

1. Change the Initial Point
The initial point can have a large effect on the solution. If you obtain the same
or worse solutions from various initial points, you become more confident
in your solution.

For example, minimize f(x) = x3 + x4 starting from the point 1/4:

ffun = @(x)x^3 + x^4;
options = optimoptions('fminunc','Algorithm','quasi-newton');
[xfinal fval] = fminunc(ffun,1/4,options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

x =
-1.6764e-008

fval =
-4.7111e-024

Change the initial point by a small amount, and the solver finds a better
solution:

[xfinal fval] = fminunc(ffun,1/4+.001,options)

Local minimum found.

Optimization completed because the size of the gradient
is less than the default value of the function tolerance.

xfinal =
-0.7500
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fval =
-0.1055

x = -0.75 is the global solution; starting from other points cannot improve
the solution.

For more information, see “Local vs. Global Optima” on page 4-27.

2. Check Nearby Points
To see if there are better values than a reported solution, evaluate your
objective function and constraints at various nearby points.

For example, with the objective function ffun from “What Can Be
Wrong If The Solver Succeeds?” on page 4-23, and the final point
xfinal = -1.5056e-008, calculate ffun(xfinal–˜) for some ˜:

delta = .1;
[ffun(xfinal),ffun(xfinal+delta),ffun(xfinal-delta)]

ans =
-0.0000 0.0011 -0.0009

The objective function is lower at ffun(xfinal-˜), so the solver reported
an incorrect solution.

A less trivial example:

options = optimoptions(@fmincon,'Algorithm','active-set');
lb = [0,-1]; ub = [1,1];
ffun = @(x)(x(1)-(x(1)-x(2))^2);
[x fval exitflag] = fmincon(ffun,[1/2 1/3],[],[],[],[],...

lb,ub,[],options)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default
valueof the function tolerance, and constraints were satisfied
to within the default value of the constraint tolerance.
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Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1

x =
1.0e-007 *

0 0.1614

fval =
-2.6059e-016

exitflag =
1

Evaluating ffun at nearby feasible points shows that the solution x is not
a true minimum:

[ffun([0,.001]),ffun([0,-.001]),...
ffun([.001,-.001]),ffun([.001,.001])]

ans =
1.0e-003 *
-0.0010 -0.0010 0.9960 1.0000

The first two listed values are smaller than the computed minimum fval.

If you have a Global Optimization Toolbox license, you can use the
patternsearch function to check nearby points.

3. Check your Objective and Constraint Functions
Double-check your objective function and constraint functions to ensure that
they correspond to the problem you intend to solve. Suggestions:

• Check the evaluation of your objective function at a few points.

• Check that each inequality constraint has the correct sign.

• If you performed a maximization, remember to take the negative of the
reported solution. (This advice assumes that you maximized a function
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by minimizing the negative of the objective.) For example, to maximize
f(x) = x – x2, minimize g(x) = –x + x2:

options = optimoptions('fminunc','Algorithm','quasi-newton');
[x fval] = fminunc(@(x)-x+x^2,0,options)

Local minimum found.

Optimization completed because the size of the gradient is
less than the default value of the function tolerance.

x =
0.5000

fval =
-0.2500

The maximum of f is 0.25, the negative of fval.

• Check that an infeasible point does not cause an error in your functions;
see “Iterations Can Violate Constraints” on page 2-34.

Local vs. Global Optima

• “Why Didn’t the Solver Find the Smallest Minimum?” on page 4-27

• “Searching for a Smaller Minimum” on page 4-28

• “Basins of Attraction” on page 4-29

Why Didn’t the Solver Find the Smallest Minimum?
In general, solvers return a local minimum. The result might be a global
minimum, but there is no guarantee that it is. This section describes why
solvers behave this way, and gives suggestions for ways to search for a global
minimum, if needed.

• A localminimum of a function is a point where the function value is smaller
than at nearby points, but possibly greater than at a distant point.

• A global minimum is a point where the function value is smaller than
at all other feasible points.
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Generally, Optimization Toolbox solvers find a local optimum. (This local
optimum can be a global optimum.) They find the optimum in the basin
of attraction of the starting point. For more information about basins of
attraction, see “Basins of Attraction” on page 4-29.

There are some exceptions to this general rule.

• Linear programming and positive definite quadratic programming
problems are convex, with convex feasible regions, so there is only one
basin of attraction. Indeed, under certain choices of options, linprog
ignores any user-supplied starting point, and quadprog does not require
one, though supplying one can sometimes speed a minimization.

• Global Optimization Toolbox functions, such as simulannealbnd, attempt
to search more than one basin of attraction.

Searching for a Smaller Minimum
If you need a global optimum, you must find an initial value for your solver in
the basin of attraction of a global optimum.

Suggestions for ways to set initial values to search for a global optimum:

• Use a regular grid of initial points.

• Use random points drawn from a uniform distribution if your problem has
all its coordinates bounded. Use points drawn from normal, exponential, or
other random distributions if some components are unbounded. The less
you know about the location of the global optimum, the more spread-out
your random distribution should be. For example, normal distributions
rarely sample more than three standard deviations away from their means,
but a Cauchy distribution (density 1/( (1 + x2))) makes hugely disparate
samples.
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• Use identical initial points with added random perturbations on each
coordinate, bounded, normal, exponential, or other.

• If you have a Global Optimization Toolbox license, use the GlobalSearch
or MultiStart solvers. These solvers automatically generate random start
points within bounds.

The more you know about possible initial points, the more focused and
successful your search will be.

Basins of Attraction
If an objective function f(x) is smooth, the vector –∇f(x) points in the direction
where f(x) decreases most quickly. The equation of steepest descent, namely

d
dt

x t f x t( ) ( ( )),= −∇

yields a path x(t) that goes to a local minimum as t gets large. Generally,
initial values x(0) that are near to each other give steepest descent paths that
tend to the same minimum point. The basin of attraction for steepest descent
is the set of initial values that lead to the same local minimum.

The following figure shows two one-dimensional minima. The figure shows
different basins of attraction with different line styles, and shows directions
of steepest descent with arrows. For this and subsequent figures, black dots
represent local minima. Every steepest descent path, starting at a point x(0),
goes to the black dot in the basin containing x(0).

����

�

One-dimensional basins
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The following figure shows how steepest descent paths can be more
complicated in more dimensions.

One basin of attraction, showing steepest descent paths from various
starting points

The following figure shows even more complicated paths and basins of
attraction.
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Several basins of attraction

Constraints can break up one basin of attraction into several pieces. For
example, consider minimizing y subject to:

• y ≥ |x|

• y ≥ 5 – 4(x–2)2.

The figure shows the two basins of attraction with the final points.
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The steepest descent paths are straight lines down to the constraint
boundaries. From the constraint boundaries, the steepest descent paths
travel down along the boundaries. The final point is either (0,0) or (11/4,11/4),
depending on whether the initial x-value is above or below 2.
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Optimizing a Simulation or Ordinary Differential Equation

In this section...

“What Is Optimizing a Simulation or ODE?” on page 4-33

“Potential Problems and Solutions” on page 4-33

“Bibliography” on page 4-39

What Is Optimizing a Simulation or ODE?
Sometimes your objective function or nonlinear constraint function values
are available only by simulation or by numerical solution of an ordinary
differential equation (ODE). Such optimization problems have several
common characteristics and challenges, discussed in “Potential Problems
and Solutions” on page 4-33.

To optimize a Simulink® model easily, try using Simulink Design
Optimization™.

Potential Problems and Solutions

• “Problems in Finite Differences” on page 4-33

• “Suggestions for Finite Differences” on page 4-34

• “Problems in Stochastic Functions” on page 4-37

• “Suggestions for Stochastic Functions” on page 4-37

• “Common Calculation of Objective and Constraints” on page 4-37

• “Failure in Objective or Constraint Function Evaluation” on page 4-38

• “Suggestions for Evaluation Failures” on page 4-38

Problems in Finite Differences
Optimization Toolbox solvers use derivatives of objective and constraint
functions internally. By default, they estimate these derivatives using finite
difference approximations of the form
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F x F x    


or

F x F x     
2

.

These finite difference approximations can be inaccurate because:

• A large value of δ allows more nonlinearity to affect the finite difference.

• A small value of δ leads to inaccuracy due to limited precision in numerics.

Specifically, for simulations and numerical solutions of ODEs:

• Simulations are often insensitive to small changes in parameters. This
means that if you use too small a perturbation δ, the simulation can return
a spurious estimated derivative of 0.

• Both simulations and numerical solutions of ODEs can have inaccuracies
in their function evaluations. These inaccuracies can be amplified in finite
difference approximations.

• Numerical solution of ODEs introduces noise at values much larger
than machine precision. This noise can be amplified in finite difference
approximations.

• If an ODE solver uses variable step sizes, then sometimes the number of
ODE steps in the evaluation of F(x + δ) can differ from the number of steps
in the evaluation of F(x). This difference can lead to a spurious difference
in the returned values, giving a misleading estimate of the derivative.

Suggestions for Finite Differences

• “Avoid Finite Differences by Using Direct Search” on page 4-35

• “Set Larger Finite Differences” on page 4-35

• “Use a Gradient Evaluation Function” on page 4-36

• “Use Tighter ODE Tolerances” on page 4-37
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Avoid Finite Differences by Using Direct Search. If you have a Global
Optimization Toolbox license, you can try using patternsearch as your
solver. patternsearch does not attempt to estimate gradients, so does not
suffer from the limitations in “Problems in Finite Differences” on page 4-33.

If you use patternsearch for expensive (time-consuming) function
evaluations, use the Cache option:

options = psoptimset('Cache','on');

If you cannot use patternsearch, and have a relatively low-dimensional
unconstrained minimization problem, try fminsearch instead. fminsearch
does not use finite differences. However, fminsearch is not a fast or tunable
solver.

Set Larger Finite Differences. You can sometimes avoid the problems in
“Problems in Finite Differences” on page 4-33 by taking larger finite difference
steps than the default.

• If you have MATLAB R2011b or later, set the FinDiffRelStep option to a
value larger than the default sqrt(eps) or eps^(1/3), such as:

- For R2011b–R2012b:

options = optimset('FinDiffRelStep',1e-3);

- For R2013a onwards:

options = optimoptions('solvername','FinDiffRelStep',1e-3);

If you have different scales in different components, set FinDiffRelStep
to a vector proportional to the component scales.

• If you have MATLAB R2011a or earlier, set the DiffMinChange option to
a larger value than the default 1e-8, and possibly set the DiffMaxChange
option also, such as:

options = optimset('DiffMinChange',1e-3,'DiffMaxChange',1);

Note It is difficult to know how to set these finite difference sizes.
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You can also try setting central finite differences:

options = optimoptions('solvername','FinDiffType','central');

Use a Gradient Evaluation Function. To avoid the problems of finite
difference estimation, you can give an approximate gradient function in your
objective and nonlinear constraints. Remember to set the GradObj option to
'on' using optimoptions, and, if relevant, also set the GradConstr option
to 'on'.

• For some ODEs, you can evaluate the gradient numerically at the same
time as you solve the ODE. For example, suppose the differential equation
for your objective function z(t,x) is

d
dt

z t x G z t x( , ) ( , , ),

where x is the vector of parameters over which you minimize. Suppose x is
a scalar. Then the differential equation for its derivative y,

y t x
d
dx

z t x( , ) ( , )

is

d
dt

y t x y t x
G z t x

z
G z t x

x
( , ) ( , ) ,

( , , ) ( , , )
 







where z(t,x) is the solution of the objective function ODE. You can solve for
y(t,x) in the same system of differential equations as z(t,x). This solution
gives you an approximated derivative without ever taking finite differences.
For nonscalar x, solve one ODE per component.

For theoretical and computational aspects of this method, see Leis and
Kramer [2]. For computational experience with this and finite-difference
methods, see Figure 7 of Raue et al. [3].

• For some simulations, you can estimate a derivative within the simulation.
For example, the likelihood ratio technique described in Reiman and
Weiss [4] or the infinitesimal perturbation analysis technique analyzed in
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Heidelberger, Cao, Zazanis, and Suri [1] estimate derivatives in the same
simulation that estimates the objective or constraint functions.

Use Tighter ODE Tolerances. You can use odeset to set the AbsTol or
RelTol ODE solver tolerances to values below their defaults. However,
choosing too small a tolerance can lead to slow solutions, convergence failure,
or other problems. Never choose a tolerance less than 1e-9 for RelTol.
The lower limit on each component of AbsTol depends on the scale of your
problem, so there is no advice.

Problems in Stochastic Functions
If a simulation uses random numbers, then evaluating an objective or
constraint function twice can return different results. This affects both
function estimation and finite difference estimation. The value of a finite
difference might be dominated by the variation due to randomness, rather
than the variation due to different evaluation points x and x + δ.

Suggestions for Stochastic Functions
If your simulation uses random numbers from a stream you control, reset
the random stream before each evaluation of your objective or constraint
functions. This practice can reduce the variability in results. For example, in
an objective function:

function f = mysimulation(x)
rng('default') % or any other resetting method
...
end

For details, see “Generate Random Numbers That Are Repeatable”.

Common Calculation of Objective and Constraints
Frequently, a simulation evaluates both the objective function and constraints
during the same simulation run. Or, both objective and nonlinear constraint
functions use the same expensive computation. Solvers such as fmincon
separately evaluate the objective function and nonlinear constraint functions.
This can lead to a great loss of efficiency, because the solver calls the
expensive computation twice. To circumvent this problem, use the technique
in “Objective and Nonlinear Constraints in the Same Function” on page 2-48.
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Failure in Objective or Constraint Function Evaluation
Your simulation or ODE can fail for some parameter values.

Suggestions for Evaluation Failures

Set Appropriate Bounds. While you might not know all limitations on the
parameter space, try to set appropriate bounds on all parameters, both upper
and lower. This can speed up your optimization, and can help the solver avoid
problematic parameter values.

Use a Solver That Respects Bounds. As described in “Iterations Can
Violate Constraints” on page 2-34, some algorithms can violate bound
constraints at intermediate iterations. For optimizing simulations and ODEs,
use algorithms that always obey bound constraints. See “Algorithms That
Satisfy Bound Constraints” on page 2-34.

Return NaN. If your simulation or ODE solver does not successfully evaluate
an objective or nonlinear constraint function at a point x, have your function
return NaN. Most Optimization Toolbox and Global Optimization Toolbox
solvers have the robustness to attempt a different iterative step if they
encounter a NaN value. These robust solvers include:

• fmincon interior-point, sqp, and trust-region-reflective algorithms

• fminunc

• lsqcurvefit

• lsqnonlin

• patternsearch

Some people are tempted to return an arbitrary large objective function value
at an unsuccessful, infeasible, or other poor point. However, this practice can
confuse a solver, because the solver does not realize that the returned value
is arbitrary. When you return NaN, the solver can attempt to evaluate at
a different point.

4-38



Optimizing a Simulation or Ordinary Differential Equation

Bibliography

[1] Heidelberger, P., X.-R. Cao, M. A. Zazanis, and R. Suri. Convergence
properties of infinitesimal perturbation analysis estimates. Management
Science 34, No. 11, pp. 1281–1302, 1988.

[2] Leis, J. R., and Kramer, M.A. The Simultaneous Solution and Sensitivity
Analysis of Systems Described by Ordinary Differential Equations. ACM
Trans. Mathematical Software, Vol. 14, No. 1, pp. 45–60, 1988.

[3] Raue, A., et al. Lessons Learned from Quantitative
Dynamical Modeling in Systems Biology. Available at
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0074335,
2013.

[4] Reiman, M. I., and A. Weiss. Sensitivity analysis via likelihood ratios.
Proc. 18th Winter Simulation Conference, ACM, New York, pp. 285–289,
1986.

4-39

http://www.jstor.org/stable/2631993
http://www.jstor.org/stable/2631993
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0074335
http://doi.acm.org/10.1145/318242.318450


4 Steps to Take After Running a Solver

4-40



5

Optimization App



5 Optimization App

Optimization App

In this section...

“Optimization App Basics” on page 5-2

“Specifying Certain Options” on page 5-10

“Importing and Exporting Your Work” on page 5-13

Optimization App Basics

• “How to Open the Optimization App” on page 5-2

• “Steps for Using the Optimization App” on page 5-4

• “Pausing and Stopping” on page 5-5

• “Viewing Results” on page 5-5

• “Final Point” on page 5-8

• “Starting a New Problem” on page 5-9

How to Open the Optimization App
To open the Optimization app, type

optimtool

in the Command Window. This opens the Optimization app, as shown in
the following figure.
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You can also start the Optimization app from the MATLAB Apps tab.
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The reference page for the Optimization app provides variations for starting
the optimtool function.

Steps for Using the Optimization App
This is a summary of the steps to set up your optimization problem and view
results with the Optimization app.

1. Select solver
and algorithm

2. Specify
function
to minimize

3. Set problem
parameters for
selected solver

4. Specify options

5. Run solver

6. View
solver status
and results

7. Import and export
problem, options, and results
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Pausing and Stopping
While a solver is running, you can

• Click Pause to temporarily suspend the algorithm. To resume the
algorithm using the current iteration at the time you paused, clickResume.

• Click Stop to stop the algorithm. The Run solver and view results
window displays information for the current iteration at the moment you
clicked Stop.

You can export your results after stopping the algorithm. For details, see
“Exporting Your Work” on page 5-13.

Viewing Results
When a solver terminates, the Run solver and view results window
displays the reason the algorithm terminated. To clear the Run solver and
view results window between runs, click Clear Results.

Sorting the Displayed Results. Depending on the solver and problem,
results can be in the form of a table. If the table has multiple rows, sort
the table by clicking a column heading. Click the heading again to sort the
results in reverse.

For example, suppose you use the Optimization app to solve the bintprog
problem described in “Optimal Investments Via Binary Integer Programming”
on page 6-151. The result appears as follows.
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To sort the results by value, from lowest to highest, click Value.

5-6



Optimization App

To sort the results in reverse order, highest to lowest, click Value again.
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To return to the original order, click Index. For an example of sorting a
table returned by the Global Optimization Toolbox gamultiobj function, see
“Multiobjective Optimization with Two Objectives”.

If you export results using File > Export to Workspace, the exported results
do not depend on the sorted display.

Final Point
The Final point updates to show the coordinates of the final point
when the algorithm terminated. If you don’t see the final point, click the
upward-pointing triangle on the icon on the lower-left.
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Starting a New Problem

Resetting Options and Clearing the Problem. Selecting File > Reset
Optimization Tool resets the problem definition and options to the original
default values. This action is equivalent to closing and restarting the app.

To clear only the problem definition, select File > Clear Problem Fields.
With this action, fields in the Problem Setup and Results pane are reset to
the defaults, with the exception of the selected solver and algorithm choice.
Any options that you have modified from the default values in the Options
pane are not reset with this action.

Setting Preferences for Changing Solvers. To modify how your options
are handled in the Optimization app when you change solvers, select
File > Preferences, which opens the Preferences dialog box shown below.

The default value, Reset options to defaults, discards any options you
specified previously in the optimtool. Under this choice, you can select the
option Prompt before resetting options to defaults.

Alternatively, you can select Keep current options if possible to preserve
the values you have modified. Changed options that are not valid with the
newly selected solver are kept but not used, while active options relevant
to the new solver selected are used. This choice allows you to try different
solvers with your problem without losing your options.

5-9



5 Optimization App

Specifying Certain Options

• “Plot Functions” on page 5-10

• “Output function” on page 5-11

• “Display to Command Window” on page 5-11

Plot Functions
You can select a plot function to easily plot various measures of progress
while the algorithm executes. Each plot selected draws a separate axis in the
figure window. If available for the solver selected, the Stop button in the
Run solver and view results window to interrupt a running solver. You
can select a predefined plot function from the Optimization app, or you can
select Custom function to write your own. Plot functions not relevant to the
solver selected are grayed out. The following lists the available plot functions:

• Current point — Select to show a bar plot of the point at the current
iteration.

• Function count — Select to plot the number of function evaluations at
each iteration.

• Function value— Select to plot the function value at each iteration.

• Norm of residuals — Select to show a bar plot of the current norm of
residuals at the current iteration.

• Max constraint— Select to plot the maximum constraint violation value
at each iteration.

• Current step— Select to plot the algorithm step size at each iteration.

• First order optimality — Select to plot the violation of the optimality
conditions for the solver at each iteration.

• Custom function— Enter your own plot function as a function handle. To
provide more than one plot function use a cell array, for example, by typing:

{@plotfcn,@plotfcn2}

Write custom plot functions with the same syntax as output functions. For
information, see “Output Function” on page 9-21.
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The graphic above shows the plot functions available for the default fmincon
solver.

Output function
Output function is a function or collection of functions the algorithm calls
at each iteration. Through an output function you can observe optimization
quantities such as function values, gradient values, and current iteration.
Specify no output function, a single output function using a function handle,
or multiple output functions. To provide more than one output function use
a cell array of function handles in the Custom function field, for example
by typing:

{@outputfcn,@outputfcn2}

For more information on writing an output function, see “Output Function”
on page 9-21.

Display to Command Window
Select Level of display to specify the amount of information displayed when
you run the algorithm. Choose from the following; depending on the solver,
only some may be available:

• off (default) — Display no output.

• final— Display the reason for stopping at the end of the run.
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• final with detailed message—Display the detailed reason for stopping
at the end of the run.

• notify— Display output only if the function does not converge.

• notify with detailed message— Display a detailed output only if the
function does not converge.

• iterative— Display information at each iteration of the algorithm and
the reason for stopping at the end of the run.

• iterative with detailed message — Display information at each
iteration of the algorithm and the detailed reason for stopping at the end of
the run.

See “Enhanced Exit Messages” on page 3-5 for information on detailed
messages.

Set Node interval, with the bintprog solver selected, to specify the interval
of explored nodes you want to display output for. Note that integer feasible
solution nodes are always shown.

Selecting Show diagnostics lists problem information and options that have
changed from the defaults.

The graphic below shows the display options for the fmincon solver. Some
other solvers have fewer options.
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Importing and Exporting Your Work

• “Exporting Your Work” on page 5-13

• “Importing Your Work” on page 5-15

• “Generating a File” on page 5-15

Exporting Your Work
The Export to Workspace dialog box enables you to send your problem
information to the MATLAB workspace as a structure or object that you may
then manipulate in the Command Window.

To access the Export to Workspace dialog box shown below, select
File > Export to Workspace.

You can specify results that contain:

• The problem and options information

• The problem and options information, and the state of the solver when
stopped (this means the latest point for most solvers, the current population
for Genetic Algorithms solvers, and the best point found for the Simulated
Annealing solver)

5-13



5 Optimization App

• The states of random number generators rand and randn at the start of
the previous run, by checking the Use random states from previous
run box for applicable solvers

• The options information only

• The results of running your problem in the Optimization app

Exported results contain all optional information. For example, an exported
results structure for lsqcurvefit contains the data x, resnorm, residual,
exitflag, output, lambda, and jacobian.

After you have exported information from the Optimization app to the
MATLAB workspace, you can see your data in the MATLAB Workspace
browser or by typing the name of the structure at the Command Window.
To see the value of a field in a structure or object, double-click the name
in the Workspace window. Alternatively, see the values by entering
exportname.fieldname at the command line. For example, so see the
message in an output structure, enter output.message. If a structure
contains structures or objects, you can double-click again in the workspace
browser, or enter exportname.name2.fieldname at the command line. For
example, to see the level of iterative display contained in the options of an
exported problem structure, enter optimproblem.options.Display.

You can run a solver on an exported problem at the command line by typing

solver(problem)

For example, if you have exported a fmincon problem named optimproblem,
you can type

fmincon(optimproblem)

This runs fmincon on the problem with the saved options in optimproblem.
You can exercise more control over outputs by typing, for example,

[x,fval,exitflag] = fmincon(optimproblem)

or use any other supported syntax.
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Importing Your Work
Whether you save options from Optimization Toolbox functions at the
Command Window, or whether you export options, or the problem and
options, from the Optimization app, you can resume work on your problem
using the Optimization app.

There are three ways to import your options, or problem and options, to the
Optimization app:

• Call the optimtool function from the Command Window specifying your
options, or problem and options, as the input, for example,

optimtool(options)

• Select File > Import Options in the Optimization app.

• Select File > Import Problem in the Optimization app.

The methods described above require that the options, or problem and options,
be present in the MATLAB workspace.

If you import a problem that was generated with the Include information
needed to resume this run box checked, the initial point is the latest point
generated in the previous run. (For Genetic Algorithm solvers, the initial
population is the latest population generated in the previous run. For the
Simulated Annealing solver, the initial point is the best point generated in
the previous run.) If you import a problem that was generated with this box
unchecked, the initial point (or population) is the initial point (or population)
of the previous run.

Generating a File
You may want to generate a file to continue with your optimization problem
in the Command Window at another time. You can run the file without
modification to recreate the results that you created with the Optimization
app. You can also edit and modify the file and run it from the Command
Window.

To export data from the Optimization app to a file, select File > Generate
Code.
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The generated file captures the following:

• The problem definition, including the solver, information on the function to
be minimized, algorithm specification, constraints, and start point

• The options with the currently selected option value

Running the file at the Command Window reproduces your problem results.

Although you cannot export your problem results to a generated file, you
can save them in a MAT-file that you can use with your generated file, by
exporting the results using the Export to Workspace dialog box, then saving
the data to a MAT-file from the Command Window.
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• “Optimization Theory Overview” on page 6-4
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Optimization Theory Overview
Optimization techniques are used to find a set of design parameters,
x = {x1,x2,...,xn}, that can in some way be defined as optimal. In a simple case
this might be the minimization or maximization of some system characteristic
that is dependent on x. In a more advanced formulation the objective function,
f(x), to be minimized or maximized, might be subject to constraints in the form
of equality constraints, Gi(x) = 0 ( i = 1,...,me); inequality constraints, Gi( x) ≤ 0
(i = me + 1,...,m); and/or parameter bounds, xl, xu.

A General Problem (GP) description is stated as

min ( ),
x

f x
(6-1)

subject to

G x i m
G x i m m

i e

i e

( ) ,..., ,
( ) ,..., ,
= =
≤ = +

0 1
0 1

where x is the vector of length n design parameters, f(x) is the objective
function, which returns a scalar value, and the vector function G(x) returns
a vector of length m containing the values of the equality and inequality
constraints evaluated at x.

An efficient and accurate solution to this problem depends not only on the size
of the problem in terms of the number of constraints and design variables but
also on characteristics of the objective function and constraints. When both
the objective function and the constraints are linear functions of the design
variable, the problem is known as a Linear Programming (LP) problem.
Quadratic Programming (QP) concerns the minimization or maximization of a
quadratic objective function that is linearly constrained. For both the LP and
QP problems, reliable solution procedures are readily available. More difficult
to solve is the Nonlinear Programming (NP) problem in which the objective
function and constraints can be nonlinear functions of the design variables.
A solution of the NP problem generally requires an iterative procedure
to establish a direction of search at each major iteration. This is usually
achieved by the solution of an LP, a QP, or an unconstrained subproblem.
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Unconstrained Nonlinear Optimization Algorithms

In this section...

“Unconstrained Optimization Definition” on page 6-5

“fminunc trust-region Algorithm” on page 6-5

“fminunc quasi-newton Algorithm” on page 6-8

“fminsearch Algorithm” on page 6-14

Unconstrained Optimization Definition
Unconstrained minimization is the problem of finding a vector x that is a local
minimum to a scalar function f(x):

min ( )
x

f x

The term unconstrained means that no restriction is placed on the range of x.

fminunc trust-region Algorithm

Trust-Region Methods for Nonlinear Minimization
Many of the methods used in Optimization Toolbox solvers are based on trust
regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,
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min ( ), .
s

q s s N ∈{ }
(6-2)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated

min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-3)

where g is the gradient of f at the current point x, H is the Hessian matrix
(the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ
is a positive scalar, and . is the 2-norm. Good algorithms exist for solving
Equation 6-3 (see [48]); such algorithms typically involve the computation of a
full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.

Such algorithms provide an accurate solution to Equation 6-3. However,
they require time proportional to several factorizations of H. Therefore, for
large-scale problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-3, have been proposed in
the literature ([42] and [50]). The approximation approach followed in
Optimization Toolbox solvers is to restrict the trust-region subproblem
to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 6-3 is trivial even if full
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eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to
the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver defines
S as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-4)

or a direction of negative curvature,

s H sT
2 2 0⋅ ⋅ < . (6-5)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-3 to determine the trial step s.

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
trial step is not accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion
of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.
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Preconditioned Conjugate Gradient Method
A popular way to solve large symmetric positive definite systems of linear
equations Hp = –g is the method of Preconditioned Conjugate Gradients
(PCG). This iterative approach requires the ability to calculate matrix-vector
products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where
C–1HC–1 is a well-conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is
symmetric. However, H is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of
negative (or zero) curvature is encountered, i.e., dTHd ≤ 0. The PCG output
direction, p, is either a direction of negative curvature or an approximate
(tol controls how approximate) solution to the Newton system Hp = –g. In
either case p is used to help define the two-dimensional subspace used in
the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-5.

fminunc quasi-newton Algorithm

Basics of Unconstrained Optimization
Although a wide spectrum of methods exists for unconstrained optimization,
methods can be broadly categorized in terms of the derivative information
that is, or is not, used. Search methods that use only function evaluations
(e.g., the simplex search of Nelder and Mead [30]) are most suitable for
problems that are not smooth or have a number of discontinuities. Gradient
methods are generally more efficient when the function to be minimized is
continuous in its first derivative. Higher order methods, such as Newton’s
method, are only really suitable when the second-order information is readily
and easily calculated, because calculation of second-order information, using
numerical differentiation, is computationally expensive.

Gradient methods use information about the slope of the function to dictate
a direction of search where the minimum is thought to lie. The simplest of
these is the method of steepest descent in which a search is performed in a
direction, –∇f(x), where ∇f(x) is the gradient of the objective function. This
method is very inefficient when the function to be minimized has long narrow
valleys as, for example, is the case for Rosenbrock’s function
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f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

(6-6)

The minimum of this function is at x = [1,1], where f(x) = 0. A contour map
of this function is shown in the figure below, along with the solution path to
the minimum for a steepest descent implementation starting at the point
[-1.9,2]. The optimization was terminated after 1000 iterations, still a
considerable distance from the minimum. The black areas are where the
method is continually zigzagging from one side of the valley to another. Note
that toward the center of the plot, a number of larger steps are taken when
a point lands exactly at the center of the valley.

Figure 6-1: Steepest Descent Method on Rosenbrock’s Function (Equation
6-6)

This function, also known as the banana function, is notorious in
unconstrained examples because of the way the curvature bends around the
origin. Rosenbrock’s function is used throughout this section to illustrate the
use of a variety of optimization techniques. The contours have been plotted
in exponential increments because of the steepness of the slope surrounding
the U-shaped valley.
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For an animated version of this figure, enter bandem at the MATLAB
command line.

Quasi-Newton Methods
Of the methods that use gradient information, the most favored are the
quasi-Newton methods. These methods build up curvature information at
each iteration to formulate a quadratic model problem of the form

min ,
x

T Tx Hx c x b
1
2

+ +
(6-7)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a
constant vector, and b is a constant. The optimal solution for this problem
occurs when the partial derivatives of x go to zero, i.e.,

∇f x Hx c( *) * .= + = 0 (6-8)

The optimal solution point, x*, can be written as

x H c* .= − −1 (6-9)

Newton-type methods (as opposed to quasi-Newton methods) calculate H
directly and proceed in a direction of descent to locate the minimum after a
number of iterations. Calculating H numerically involves a large amount
of computation. Quasi-Newton methods avoid this by using the observed
behavior of f(x) and ∇f(x) to build up curvature information to make an
approximation to H using an appropriate updating technique.

A large number of Hessian updating methods have been developed. However,
the formula of Broyden [3], Fletcher [12], Goldfarb [20], and Shanno [37]
(BFGS) is thought to be the most effective for use in a general purpose method.

The formula given by BFGS is

H H
q q

q s

H s s H

s H s
k k

k k
T

k
T

k

k k k
T

k
T

k
T

k k
   1 ,

(6-10)

where
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s x x

q f x f x
k k k

k k k

= −
= ( ) − ( )

+

+

1

1

,

.∇ ∇

As a starting point, H0 can be set to any symmetric positive definite matrix,
for example, the identity matrix I. To avoid the inversion of the Hessian H,
you can derive an updating method that avoids the direct inversion of H by
using a formula that makes an approximation of the inverse Hessian H–1 at
each update. A well-known procedure is the DFP formula of Davidon [7],
Fletcher, and Powell [14]. This uses the same formula as the BFGS method
(Equation 6-10) except that qk is substituted for sk.

The gradient information is either supplied through analytically calculated
gradients, or derived by partial derivatives using a numerical differentiation
method via finite differences. This involves perturbing each of the design
variables, x, in turn and calculating the rate of change in the objective
function.

At each major iteration, k, a line search is performed in the direction

d H f xk k= − ⋅ ( )−1 ∇ . (6-11)

The quasi-Newton method is illustrated by the solution path on Rosenbrock’s
function in Figure 6-2, BFGS Method on Rosenbrock’s Function. The method
is able to follow the shape of the valley and converges to the minimum after
140 function evaluations using only finite difference gradients.
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Figure 6-2: BFGS Method on Rosenbrock’s Function

For an animated version of this figure, enter bandem at the MATLAB
command line.

Line Search
Line search is a search method that is used as part of a larger optimization
algorithm. At each step of the main algorithm, the line-search method
searches along the line containing the current point, xk, parallel to the search
direction, which is a vector determined by the main algorithm. That is, the
method finds the next iterate xk+1 of the form

x x dk k k+ = +1  * , (6-12)

where xk denotes the current iterate, dk is the search direction, and α* is a
scalar step length parameter.

The line search method attempts to decrease the objective function along the
line xk + α*dk by repeatedly minimizing polynomial interpolation models of
the objective function. The line search procedure has two main steps:

• The bracketing phase determines the range of points on the line

x x dk k k+ = +1  * to be searched. The bracket corresponds to an interval
specifying the range of values of α.
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• The sectioning step divides the bracket into subintervals, on which
the minimum of the objective function is approximated by polynomial
interpolation.

The resulting step length α satisfies the Wolfe conditions:

f x d f x c f dk k k k
T

k+( ) ≤ ( ) + 1 ∇ , (6-13)

∇ ∇f x d d c f dk k
T

k k
T

k+( ) ≥ 2 , (6-14)

where c1 and c2 are constants with 0 < c1 < c2 < 1.

The first condition (Equation 6-13) requires that αk sufficiently decreases the
objective function. The second condition (Equation 6-14) ensures that the step
length is not too small. Points that satisfy both conditions (Equation 6-13 and
Equation 6-14) are called acceptable points.

The line search method is an implementation of the algorithm described in
Section 2-6 of [13]. See also [31] for more information about line search.

Hessian Update
Many of the optimization functions determine the direction of search by
updating the Hessian matrix at each iteration, using the BFGS method
(Equation 6-10). The function fminunc also provides an option to use the
DFP method given in “Quasi-Newton Methods” on page 6-10 (set HessUpdate
to 'dfp' in options to select the DFP method). The Hessian, H, is always
maintained to be positive definite so that the direction of search, d, is always
in a descent direction. This means that for some arbitrarily small step α in
the direction d, the objective function decreases in magnitude. You achieve
positive definiteness of H by ensuring that H is initialized to be positive

definite and thereafter q sk
T

k (from Equation 6-15) is always positive. The

term q sk
T

k is a product of the line search step length parameter αk and
a combination of the search direction d with past and present gradient
evaluations,
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q s f x d f x dk
T

k k k
T

k
T= ( ) − ( )( )+ ∇ ∇1 .

(6-15)

You always achieve the condition that q sk
T

k is positive by performing a
sufficiently accurate line search. This is because the search direction, d, is a
descent direction, so that αk and the negative gradient –∇f(xk)Td are always
positive. Thus, the possible negative term –∇f(xk+1)Td can be made as small in
magnitude as required by increasing the accuracy of the line search.

fminsearch Algorithm
fminsearch uses the Nelder-Mead simplex algorithm as described in Lagarias
et al. [57]. This algorithm uses a simplex of n + 1 points for n-dimensional
vectors x. The algorithm first makes a simplex around the initial guess x0
by adding 5% of each component x0(i) to x0, and using these n vectors as
elements of the simplex in addition to x0. (It uses 0.00025 as component i if
x0(i) = 0.) Then, the algorithm modifies the simplex repeatedly according
to the following procedure.

Note The keywords for the fminsearch iterative display appear in bold after
the description of the step.

1 Let x(i) denote the list of points in the current simplex, i = 1,...,n+1.

2 Order the points in the simplex from lowest function value f(x(1)) to
highest f(x(n+1)). At each step in the iteration, the algorithm discards the
current worst point x(n+1), and accepts another point into the simplex. [Or,
in the case of step 7 below, it changes all n points with values above f(x(1))].

3 Generate the reflected point

r = 2m – x(n+1),

where

m = Σx(i)/n, i = 1...n,

and calculate f(r).
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4 If f(x(1)) ≤ f(r) < f(x(n)), accept r and terminate this iteration. Reflect

5 If f(r) < f(x(1)), calculate the expansion point s

s = m + 2(m – x(n+1)),

and calculate f(s).

a If f(s) < f(r), accept s and terminate the iteration. Expand

b Otherwise, accept r and terminate the iteration. Reflect

6 If f(r) ≥ f(x(n)), perform a contraction between m and the better of x(n+1)
and r:

a If f(r) < f(x(n+1)) (i.e., r is better than x(n+1)), calculate

c = m + (r – m)/2

and calculate f(c). If f(c) < f(r), accept c and terminate the iteration.
Contract outside Otherwise, continue with Step 7 (Shrink).

b If f(r) ≥ f(x(n+1)), calculate

cc = m + (x(n+1) – m)/2

and calculate f(cc). If f(cc) < f(x(n+1)), accept cc and terminate the
iteration. Contract inside Otherwise, continue with Step 7 (Shrink).

7 Calculate the n points

v(i) = x(1) + (x(i) – x(1))/2

and calculate f(v(i)), i = 2,...,n+1. The simplex at the next iteration is x(1),
v(2),...,v(n+1). Shrink

The following figure shows the points that fminsearch might calculate in the
procedure, along with each possible new simplex. The original simplex has a
bold outline. The iterations proceed until they meet a stopping criterion.
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fminunc Unconstrained Minimization
Consider the problem of finding a set of values [x1, x2] that solves

min ( ) .
x

xf x e x x x x x= + + + +( )1 4 2 4 2 11
2

2
2

1 2 2 (6-16)

To solve this two-dimensional problem, write a file that returns the function
value. Then, invoke the unconstrained minimization routine fminunc.

Step 1: Write a file objfun.m.
This code ships with the toolbox. To view, enter type objfun:

function f = objfun(x)
f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Invoke one of the unconstrained optimization
routines.

x0 = [-1,1]; % Starting guess
options = optimoptions(@fminunc,'Algorithm','quasi-newton');
[x,fval,exitflag,output] = fminunc(@objfun,x0,options);

This produces the following output:

Local minimum found.

Optimization completed because the size of the gradient is less
than the default value of the function tolerance.

View the results:

x,fval,exitflag,output

x =
0.5000 -1.0000

fval =
3.6609e-15
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exitflag =
1

output =
iterations: 8
funcCount: 66
stepsize: 1

firstorderopt: 1.2284e-007
algorithm: 'medium-scale: Quasi-Newton line search'

message: 'Local minimum found.

Optimization completed because the size of the gradie...'

The exitflag tells whether the algorithm converged. exitflag = 1 means a
local minimum was found. The meanings of exitflags are given in function
reference pages.

The output structure gives more details about the optimization. For fminunc,
it includes the number of iterations in iterations, the number of function
evaluations in funcCount, the final step-size in stepsize, a measure of
first-order optimality (which in this unconstrained case is the infinity norm of
the gradient at the solution) in firstorderopt, the type of algorithm used in
algorithm, and the exit message (the reason the algorithm stopped).

Pass the variable options to fminunc to change characteristics of the
optimization algorithm, as in

x = fminunc(@objfun,x0,options);

options contains values for termination tolerances and algorithm choices.
Create options using the optimoptions function:

options = optimoptions(@fminunc,'Algorithm','quasi-newton');

You can also create options by exporting from the Optimization app.

In this example, we have used the quasi-newton algorithm. Other
options include controlling the amount of command line display during the
optimization iteration, the tolerances for the termination criteria, whether a
user-supplied gradient or Jacobian is to be used, and the maximum number
of iterations or function evaluations. See optimoptions, the individual
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optimization functions, and “Optimization Options Reference” on page 9-7 for
more options and information.
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Minimization with Gradient and Hessian
This example involves solving a nonlinear minimization problem with a
tridiagonal Hessian matrix H(x) first computed explicitly, and then by
providing the Hessian’s sparsity structure for the finite-differencing routine.

The problem is to find x to minimize

f x x xi
x

i
x

i

n
i i

( ) ,= ( ) + ( )⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+ +( )
+

+( )
=

−

∑ 2 1
1

2 1

1

1
1

2 2

(6-17)

where n = 1000.

Step 1: Write a file brownfgh.m that computes the
objective function, the gradient of the objective, and
the sparse tridiagonal Hessian matrix.
The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as
the objective function, you need to use optimoptions to indicate that this
information is available in brownfgh, using the GradObj and Hessian options.

Step 2: Call a nonlinear minimization routine with a
starting point xstart.

n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimoptions(@fminunc,'GradObj','on','Hessian','on');
[x,fval,exitflag,output] = fminunc(@brownfgh,xstart,options);

This 1000 variable problem is solved in about 7 iterations and 7 conjugate
gradient iterations with a positive exitflag indicating convergence. The
final function value and measure of optimality at the solution x are both close
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to zero. For fminunc, the first order optimality is the infinity norm of the
gradient of the function, which is zero at a local minimum:

fval,exitflag,output

fval =
2.8709e-17

exitflag =
1

output =
iterations: 7
funcCount: 8

cgiterations: 7
firstorderopt: 4.7948e-10

algorithm: 'large-scale: trust-region Newton'
message: 'Local minimum found.

Optimization completed because the size of the grad...'
constrviolation: []
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Minimization with Gradient and Hessian Sparsity Pattern
Next, solve the same problem but the Hessian matrix is now approximated
by sparse finite differences instead of explicit computation. To use the
trust-region method in fminunc, you must compute the gradient in fun; it is
not optional as in the quasi-newton method.

The brownfg file computes the objective function and gradient.

Step 1: Write a file brownfg.m that computes the
objective function and the gradient of the objective.
This function file ships with your software.

function [f,g] = brownfg(x)
% BROWNFG Nonlinear minimization test problem
%
% Evaluate the function
n=length(x); y=zeros(n,1);
i=1:(n-1);
y(i)=(x(i).^2).^(x(i+1).^2+1) + ...

(x(i+1).^2).^(x(i).^2+1);
f=sum(y);

% Evaluate the gradient if nargout > 1
if nargout > 1

i=1:(n-1); g = zeros(n,1);
g(i) = 2*(x(i+1).^2+1).*x(i).* ...

((x(i).^2).^(x(i+1).^2))+ ...
2*x(i).*((x(i+1).^2).^(x(i).^2+1)).* ...
log(x(i+1).^2);

g(i+1) = g(i+1) + ...
2*x(i+1).*((x(i).^2).^(x(i+1).^2+1)).* ...
log(x(i).^2) + ...
2*(x(i).^2+1).*x(i+1).* ...
((x(i+1).^2).^(x(i).^2));

end

To allow efficient computation of the sparse finite-difference approximation of
the Hessian matrix H(x), the sparsity structure of H must be predetermined.
In this case assume this structure, Hstr, a sparse matrix, is available in file
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brownhstr.mat. Using the spy command you can see that Hstr is indeed
sparse (only 2998 nonzeros). Use optimoptions to set the HessPattern option
to Hstr. When a problem as large as this has obvious sparsity structure,
not setting the HessPattern option requires a huge amount of unnecessary
memory and computation because fminunc attempts to use finite differencing
on a full Hessian matrix of one million nonzero entries.

You must also set the GradObj option to 'on' using optimoptions, since the
gradient is computed in brownfg.m. Then execute fminunc as shown in Step 2.

Step 2: Call a nonlinear minimization routine with a
starting point xstart.

fun = @brownfg;
load brownhstr % Get Hstr, structure of the Hessian
spy(Hstr) % View the sparsity structure of Hstr
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n = 1000;
xstart = -ones(n,1);
xstart(2:2:n,1) = 1;
options = optimoptions(@fminunc,'GradObj','on','HessPattern',Hstr);
[x,fval,exitflag,output] = fminunc(fun,xstart,options);

This 1000-variable problem is solved in seven iterations and seven conjugate
gradient iterations with a positive exitflag indicating convergence. The
final function value and measure of optimality at the solution x are both close
to zero (for fminunc, the first-order optimality is the infinity norm of the
gradient of the function, which is zero at a local minimum):

exitflag,fval,output
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exitflag =
1

fval =
7.4738e-17

output =
iterations: 7
funcCount: 8

cgiterations: 7
firstorderopt: 7.9822e-10

algorithm: 'large-scale: trust-region Newton'
message: 'Local minimum found.

Optimization completed because the size of the grad...'
constrviolation: []
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Constrained Nonlinear Optimization Algorithms

In this section...

“Constrained Optimization Definition” on page 6-26

“fmincon Trust Region Reflective Algorithm” on page 6-26

“fmincon Active Set Algorithm” on page 6-32

“fmincon SQP Algorithm” on page 6-42

“fmincon Interior Point Algorithm” on page 6-43

“fminbnd Algorithm” on page 6-47

“fseminf Problem Formulation and Algorithm” on page 6-47

Constrained Optimization Definition
Constrained minimization is the problem of finding a vector x that is a local
minimum to a scalar function f(x) subject to constraints on the allowable x:

min ( )
x

f x

such that one or more of the following holds: c(x) ≤ 0, ceq(x) = 0, A·x ≤ b,
Aeq·x = beq, l ≤ x ≤ u. There are even more constraints used in semi-infinite
programming; see “fseminf Problem Formulation and Algorithm” on page
6-47.

fmincon Trust Region Reflective Algorithm

Trust-Region Methods for Nonlinear Minimization
Many of the methods used in Optimization Toolbox solvers are based on trust
regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
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reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,

min ( ), .
s

q s s N ∈{ }
(6-18)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated

min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-19)

where g is the gradient of f at the current point x, H is the Hessian matrix
(the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ
is a positive scalar, and . is the 2-norm. Good algorithms exist for solving
Equation 6-19 (see [48]); such algorithms typically involve the computation of
a full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.

Such algorithms provide an accurate solution to Equation 6-19. However,
they require time proportional to several factorizations of H. Therefore, for
large-scale problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-19, have been proposed in
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the literature ([42] and [50]). The approximation approach followed in
Optimization Toolbox solvers is to restrict the trust-region subproblem
to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 6-19 is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to
the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver defines
S as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-20)

or a direction of negative curvature,

s H sT
2 2 0⋅ ⋅ < . (6-21)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-19 to determine the trial step s.

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
trial step is not accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion
of this aspect.
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Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.

Preconditioned Conjugate Gradient Method
A popular way to solve large symmetric positive definite systems of linear
equations Hp = –g is the method of Preconditioned Conjugate Gradients
(PCG). This iterative approach requires the ability to calculate matrix-vector
products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where
C–1HC–1 is a well-conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is
symmetric. However, H is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of
negative (or zero) curvature is encountered, i.e., dTHd ≤ 0. The PCG output
direction, p, is either a direction of negative curvature or an approximate
(tol controls how approximate) solution to the Newton system Hp = –g. In
either case p is used to help define the two-dimensional subspace used in
the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-5.

Linear Equality Constraints
Linear constraints complicate the situation described for unconstrained
minimization. However, the underlying ideas described previously can be
carried through in a clean and efficient way. The trust-region methods in
Optimization Toolbox solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

min ( ) ,f x Ax b  such that  ={ } (6-22)

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers
preprocess A to remove strict linear dependencies using a technique based on
the LU factorization of AT [46]. Here A is assumed to be of rank m.
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The method used to solve Equation 6-22 differs from the unconstrained
approach in two significant ways. First, an initial feasible point x0 is
computed, using a sparse least-squares step, so that Ax0 = b. Second,
Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients
(RPCG), see [46], in order to compute an approximate reduced Newton step
(or a direction of negative curvature in the null space of A). The key linear
algebra step involves solving systems of the form

C A

A

s
t

rT

 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎤

⎦
⎥ =
⎡

⎣
⎢
⎤

⎦
⎥ ,

(6-23)

where A approximates A (small nonzeros of A are set to zero provided rank is
not lost) and C is a sparse symmetric positive-definite approximation to H,
i.e., C = H. See [46] for more details.

Box Constraints
The box constrained problem is of the form

min ( ) ,f x l x u  such that  ≤ ≤{ } (6-24)

where l is a vector of lower bounds, and u is a vector of upper bounds. Some
(or all) of the components of l can be equal to –∞ and some (or all) of the
components of u can be equal to ∞. The method generates a sequence of
strictly feasible points. Two techniques are used to maintain feasibility while
achieving robust convergence behavior. First, a scaled modified Newton
step replaces the unconstrained Newton step (to define the two-dimensional
subspace S). Second, reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker
necessary conditions for Equation 6-24,

D x g( ) ,( ) =−2 0 (6-25)

where

D x vk( ) ,/= ( )−diag 1 2
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and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li

• If gi < 0 and ui = ∞ then vi = –1

• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system Equation 6-25 is not differentiable everywhere.
Nondifferentiability occurs when vi = 0. You can avoid such points by
maintaining strict feasibility, i.e., restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations
given by Equation 6-25 is defined as the solution to the linear system

ˆ ˆMDs gN = − (6-26)

at the kth iteration, where

ˆ ,/g D g v g= = ( )−1 1 2diag
(6-27)

and

ˆ ( ) .M D HD g Jv= +− −1 1 diag (6-28)

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the
diagonal matrix Jv equals 0, –1, or 1. If all the components of l and u are
finite, Jv = diag(sign(g)). At a point where gi = 0, vimight not be differentiable.

Jii
v = 0 is defined at such a point. Nondifferentiability of this type is not a

cause for concern because, for such a component, it is not significant which
value vi takes. Further, |vi| will still be discontinuous at this point, but the
function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection
step is defined as follows. Given a step p that intersects a bound constraint,
consider the first bound constraint crossed by p; assume it is the ith bound

6-31



6 Optimization Algorithms and Examples

constraint (either the ith upper or ith lower bound). Then the reflection step
pR = p except in the ith component, where pRi = –pi.

fmincon Active Set Algorithm

Introduction
In constrained optimization, the general aim is to transform the problem
into an easier subproblem that can then be solved and used as the basis of
an iterative process. A characteristic of a large class of early methods is the
translation of the constrained problem to a basic unconstrained problem by
using a penalty function for constraints that are near or beyond the constraint
boundary. In this way the constrained problem is solved using a sequence
of parameterized unconstrained optimizations, which in the limit (of the
sequence) converge to the constrained problem. These methods are now
considered relatively inefficient and have been replaced by methods that
have focused on the solution of the Karush-Kuhn-Tucker (KKT) equations.
The KKT equations are necessary conditions for optimality for a constrained
optimization problem. If the problem is a so-called convex programming
problem, that is, f(x) and Gi(x), i = 1,...,m, are convex functions, then the KKT
equations are both necessary and sufficient for a global solution point.

Referring to GP (Equation 6-1), the Kuhn-Tucker equations can be stated as

∇ ∇f x G x

G x i m

i m

i i
i

m

i i e

i

* *

* , ,...,

,

( ) + ⋅ ( ) =

⋅ ( ) = =
≥ =

=
∑





1
0

0 1

0

  

  ee m+1,..., , (6-29)

in addition to the original constraints in Equation 6-1.

The first equation describes a canceling of the gradients between the objective
function and the active constraints at the solution point. For the gradients to
be canceled, Lagrange multipliers (λi, i = 1,...,m) are necessary to balance the
deviations in magnitude of the objective function and constraint gradients.
Because only active constraints are included in this canceling operation,
constraints that are not active must not be included in this operation and so
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are given Lagrange multipliers equal to 0. This is stated implicitly in the last
two Kuhn-Tucker equations.

The solution of the KKT equations forms the basis to many nonlinear
programming algorithms. These algorithms attempt to compute the
Lagrange multipliers directly. Constrained quasi-Newton methods guarantee
superlinear convergence by accumulating second-order information regarding
the KKT equations using a quasi-Newton updating procedure. These methods
are commonly referred to as Sequential Quadratic Programming (SQP)
methods, since a QP subproblem is solved at each major iteration (also known
as Iterative Quadratic Programming, Recursive Quadratic Programming, and
Constrained Variable Metric methods).

The 'active-set' algorithm is not a large-scale algorithm; see “Large-Scale
vs. Medium-Scale Algorithms” on page 2-12.

Sequential Quadratic Programming (SQP)
SQP methods represent the state of the art in nonlinear programming
methods. Schittkowski [36], for example, has implemented and tested a
version that outperforms every other tested method in terms of efficiency,
accuracy, and percentage of successful solutions, over a large number of test
problems.

Based on the work of Biggs [1], Han [22], and Powell ([32] and [33]), the
method allows you to closely mimic Newton’s method for constrained
optimization just as is done for unconstrained optimization. At each major
iteration, an approximation is made of the Hessian of the Lagrangian function
using a quasi-Newton updating method. This is then used to generate a QP
subproblem whose solution is used to form a search direction for a line search
procedure. An overview of SQP is found in Fletcher [13], Gill et al. [19],
Powell [35], and Schittkowski [23]. The general method, however, is stated
here.

Given the problem description in GP (Equation 6-1) the principal idea is the
formulation of a QP subproblem based on a quadratic approximation of the
Lagrangian function.
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L x f x g xi i
i

m
( , ) ( ) ( ). = + ⋅

=
∑

1 (6-30)

Here you simplify Equation 6-1 by assuming that bound constraints have
been expressed as inequality constraints. You obtain the QP subproblem by
linearizing the nonlinear constraints.

Quadratic Programming (QP) Subproblem

min

, ,...,
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kk
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i k ed g x i m m( ) + ( ) ≤ = +0 1, ,..., .  (6-31)
This subproblem can be solved using any QP algorithm (see, for instance,
“Quadratic Programming Solution” on page 6-37). The solution is used to
form a new iterate

xk + 1 = xk + αkdk.

The step length parameter αk is determined by an appropriate line search
procedure so that a sufficient decrease in a merit function is obtained (see
“Updating the Hessian Matrix” on page 6-35). The matrix Hk is a positive
definite approximation of the Hessian matrix of the Lagrangian function
(Equation 6-30). Hk can be updated by any of the quasi-Newton methods,
although the BFGS method (see “Updating the Hessian Matrix” on page 6-35)
appears to be the most popular.

A nonlinearly constrained problem can often be solved in fewer iterations
than an unconstrained problem using SQP. One of the reasons for this is
that, because of limits on the feasible area, the optimizer can make informed
decisions regarding directions of search and step length.

Consider Rosenbrock’s function with an additional nonlinear inequality
constraint, g(x),
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x x1
2

2
2 1 5 0+ − ≤. . (6-32)

This was solved by an SQP implementation in 96 iterations compared to
140 for the unconstrained case. SQP Method on Nonlinearly Constrained
Rosenbrock’s Function (Equation 6-6) on page 6-35 shows the path to the
solution point x = [0.9072,0.8228] starting at x = [–1.9,2.0].

Figure 6-3: SQP Method on Nonlinearly Constrained Rosenbrock’s Function
(Equation 6-6)

SQP Implementation
The SQP implementation consists of three main stages, which are discussed
briefly in the following subsections:

• “Updating the Hessian Matrix” on page 6-35

• “Quadratic Programming Solution” on page 6-37

• “Line Search and Merit Function” on page 6-41

Updating the Hessian Matrix. At each major iteration a positive definite
quasi-Newton approximation of the Hessian of the Lagrangian function, H,
is calculated using the BFGS method, where λi, i = 1,...,m, is an estimate
of the Lagrange multipliers.
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Powell [33] recommends keeping the Hessian positive definite even though
it might be positive indefinite at the solution point. A positive definite

Hessian is maintained providing q sk
T

k is positive at each update and that H

is initialized with a positive definite matrix. When q sk
T

k is not positive, qk

is modified on an element-by-element basis so that q sk
T

k > 0 . The general
aim of this modification is to distort the elements of qk, which contribute to a
positive definite update, as little as possible. Therefore, in the initial phase
of the modification, the most negative element of qk*sk is repeatedly halved.

This procedure is continued until q sk
T

k is greater than or equal to a small

negative tolerance. If, after this procedure, q sk
T

k is still not positive, modify
qk by adding a vector v multiplied by a constant scalar w, that is,

q q wvk k= + , (6-34)

where

v g x g x g x g x
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i i k i k i k i k
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q s i m

v
k i k i

i

( ) ⋅ ( ) < =

=

, ,...,

and increase w systematically until q sk
T

k becomes positive.

The functions fmincon, fminimax, fgoalattain, and fseminf all use SQP.
If Display is set to 'iter' in options, then various information is given
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such as function values and the maximum constraint violation. When the
Hessian has to be modified using the first phase of the preceding procedure to
keep it positive definite, then Hessian modified is displayed. If the Hessian
has to be modified again using the second phase of the approach described
above, then Hessian modified twice is displayed. When the QP subproblem
is infeasible, then infeasible is displayed. Such displays are usually not
a cause for concern but indicate that the problem is highly nonlinear and
that convergence might take longer than usual. Sometimes the message no

update is displayed, indicating that q sk
T

k is nearly zero. This can be an
indication that the problem setup is wrong or you are trying to minimize a
noncontinuous function.

Quadratic Programming Solution. At each major iteration of the SQP
method, a QP problem of the following form is solved, where Ai refers to the
ith row of the m-by-n matrix A.

min ( ) ,

, ,...,
, ,

d

T T

i i e

i i e

n
q d d Hd c d

A d b i m

A d b i m
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= =
≤ = +
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2

1
1

  
  ...., .m (6-35)

The method used in Optimization Toolbox functions is an active set strategy
(also known as a projection method) similar to that of Gill et al., described in
[18] and [17]. It has been modified for both Linear Programming (LP) and
Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the
calculation of a feasible point (if one exists). The second phase involves the
generation of an iterative sequence of feasible points that converge to the

solution. In this method an active set, Ak , is maintained that is an estimate
of the active constraints (i.e., those that are on the constraint boundaries) at
the solution point. Virtually all QP algorithms are active set methods. This
point is emphasized because there exist many different methods that are very
similar in structure but that are described in widely different terms.

Ak is updated at each iteration k, and this is used to form a basis for a search

direction d̂k . Equality constraints always remain in the active set Ak . The
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notation for the variable d̂k is used here to distinguish it from dk in the major

iterations of the SQP method. The search direction d̂k is calculated and
minimizes the objective function while remaining on any active constraint

boundaries. The feasible subspace for d̂k is formed from a basis Zk whose

columns are orthogonal to the estimate of the active set Ak (i.e., A Zk k = 0 ).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk, is guaranteed to remain on the boundaries
of the active constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition

of the matrix Ak
T , where l is the number of active constraints and l < m.

That is, Zk is given by

Z Q l mk = +[ ]:, : ,1 (6-36)

where

Q A
RT

k
T =

⎡

⎣
⎢
⎤

⎦
⎥0
.

Once Zk is found, a new search direction d̂k is sought that minimizes q(d)

where d̂k is in the null space of the active constraints. That is, d̂k is a linear

combination of the columns of Zk: d̂ Z pk k= for some vector p.

Then if you view the quadratic as a function of p, by substituting for d̂k ,
you have

q p p Z HZ p c Z pT
k
T

k
T

k( ) .= +1
2 (6-37)

Differentiating this with respect to p yields
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∇q p Z HZ p Z ck
T

k k
T( ) .= + (6-38)

∇q(p) is referred to as the projected gradient of the quadratic function because

it is the gradient projected in the subspace defined by Zk. The term Z HZk
T

k
is called the projected Hessian. Assuming the Hessian matrix H is positive
definite (which is the case in this implementation of SQP), then the minimum
of the function q(p) in the subspace defined by Zk occurs when ∇q(p) = 0,
which is the solution of the system of linear equations

Z HZ p Z ck
T

k k
T= − . (6-39)

A step is then taken of the form

x x d d Z pk k k k k
T

+ = + =1  ˆ , ˆ .  where (6-40)

At each iteration, because of the quadratic nature of the objective function,

there are only two choices of step length α. A step of unity along d̂k is the

exact step to the minimum of the function restricted to the null space of Ak .
If such a step can be taken, without violation of the constraints, then this

is the solution to QP (Equation 6-35). Otherwise, the step along d̂k to the
nearest constraint is less than unity and a new constraint is included in the
active set at the next iteration. The distance to the constraint boundaries in

any direction d̂k is given by

 =
− −( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪∈{ }
min ,

,...,i m

i k i

i k

A x b

A d1 (6-41)

which is defined for constraints not in the active set, and where the direction

d̂k is towards the constraint boundary, i.e., A d i mi k
ˆ , ,...,> =0 1 .

When n independent constraints are included in the active set, without
location of the minimum, Lagrange multipliers, λk, are calculated that satisfy
the nonsingular set of linear equations
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A ck
T

k = . (6-42)

If all elements of λk are positive, xk is the optimal solution of QP (Equation
6-35). However, if any component of λk is negative, and the component does
not correspond to an equality constraint, then the corresponding element is
deleted from the active set and a new iterate is sought.

Initialization

The algorithm requires a feasible point to start. If the current point from the
SQP method is not feasible, then you can find a point by solving the linear
programming problem

min

, ,...,
,

,
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1
ii m me= +1,..., . (6-43)

The notation Ai indicates the ith row of the matrix A. You can find a feasible
point (if one exists) to Equation 6-43 by setting x to a value that satisfies
the equality constraints. You can determine this value by solving an under-
or overdetermined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable γ is
set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the
search direction to the steepest descent direction at each iteration, where gk is
the gradient of the objective function (equal to the coefficients of the linear
objective function).

ˆ .d Z Z gk k k
T

k= − (6-44)

If a feasible point is found using the preceding LP method, the main QP phase

is entered. The search direction d̂k is initialized with a search direction d̂1
found from solving the set of linear equations
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Hd gk
ˆ ,1 = − (6-45)

where gk is the gradient of the objective function at the current iterate xk
(i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search

for the main SQP routine d̂k is taken as one that minimizes γ.

Line Search and Merit Function. The solution to the QP subproblem
produces a vector dk, which is used to form a new iterate

x x dk k k+ = +1  . (6-46)

The step length parameter αk is determined in order to produce a sufficient
decrease in a merit function. The merit function used by Han [22] and
Powell [33] of the following form is used in this implementation.
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Powell recommends setting the penalty parameter
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(6-48)

This allows positive contribution from constraints that are inactive in the
QP solution but were recently active. In this implementation, the penalty
parameter ri is initially set to

r
f x

g xi
i

=
∇
∇

( )
( )

,
(6-49)

where  represents the Euclidean norm.
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This ensures larger contributions to the penalty parameter from constraints
with smaller gradients, which would be the case for active constraints at
the solution point.

fmincon SQP Algorithm
The sqp algorithm is similar to the active-set algorithm (for a description,
see “fmincon Active Set Algorithm” on page 6-32). The basic sqp algorithm is
described in Chapter 18 of Nocedal and Wright [31].

The most important differences between the sqp and the active-set
algorithms are:

Strict Feasibility With Respect to Bounds
The sqp algorithm takes every iterative step in the region constrained by
bounds. Furthermore, finite difference steps also respect bounds. Bounds are
not strict; a step can be exactly on a boundary. This strict feasibility can be
beneficial when your objective function or nonlinear constraint functions are
undefined or are complex outside the region constrained by bounds.

Robustness to Non-Double Results
During its iterations, the sqp algorithm can attempt to take a step that fails.
This means an objective function or nonlinear constraint function you supply
returns a value of Inf, NaN, or a complex value. In this case, the algorithm
attempts to take a smaller step.

Refactored Linear Algebra Routines
The sqp algorithm uses a different set of linear algebra routines to solve the
quadratic programming subproblem, Equation 6-31. These routines are more
efficient in both memory usage and speed than the active-set routines.

Reformulated Feasibility Routines
The sqp algorithm has two new approaches to the solution of Equation 6-31
when constraints are not satisfied.

• The sqp algorithm combines the objective and constraint functions into a
merit function. The algorithm attempts to minimize the merit function
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subject to relaxed constraints. This modified problem can lead to a feasible
solution. However, this approach has more variables than the original
problem, so the problem size in Equation 6-31 increases. The increased
size can slow the solution of the subproblem. These routines are based
on the articles by Spellucci [60] and Tone [61]. The sqp algorithm sets
the penalty parameter for the merit function Equation 6-47 according to
the suggestion in [41].

• Suppose nonlinear constraints are not satisfied, and an attempted step
causes the constraint violation to grow. The sqp algorithm attempts to
obtain feasibility using a second-order approximation to the constraints.
The second-order technique can lead to a feasible solution. However, this
technique can slow the solution by requiring more evaluations of the
nonlinear constraint functions.

fmincon Interior Point Algorithm

Barrier Function
The interior-point approach to constrained minimization is to solve a sequence
of approximate minimization problems. The original problem is

min ( ), ( ) ( ) .
x

f x h x g x subject to  and = ≤0 0
(6-50)

For each μ > 0, the approximate problem is

min ( , ) min ( ) ln , ( )
, ,x s x s

i
i

f x s f x s h x = − ( ) =∑  subject to  and 0 gg x s( ) .+ = 0
(6-51)

There are as many slack variables si as there are inequality constraints g.
The si are restricted to be positive to keep ln(si) bounded. As μ decreases
to zero, the minimum of fμ should approach the minimum of f. The added
logarithmic term is called a barrier function. This method is described in
[40], [41], and [51].

The approximate problem Equation 6-51 is a sequence of equality constrained
problems. These are easier to solve than the original inequality-constrained
problem Equation 6-50.
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To solve the approximate problem, the algorithm uses one of two main types
of steps at each iteration:

• A direct step in (x, s). This step attempts to solve the KKT equations,
Equation 3-2 and Equation 3-3, for the approximate problem via a linear
approximation. This is also called a Newton step.

• A CG (conjugate gradient) step, using a trust region.

By default, the algorithm first attempts to take a direct step. If it cannot, it
attempts a CG step. One case where it does not take a direct step is when the
approximate problem is not locally convex near the current iterate.

At each iteration the algorithm decreases a merit function, such as

f x s h x g x s ( , ) ( ), ( ) .+ +( )
The parameter  may increase with iteration number in order to force the
solution towards feasibility. If an attempted step does not decrease the merit
function, the algorithm rejects the attempted step, and attempts a new step.

If either the objective function or a nonlinear constraint function returns a
complex value, NaN, Inf, or an error at an iterate xj, the algorithm rejects xj.
The rejection has the same effect as if the merit function did not decrease
sufficiently: the algorithm then attempts a different, shorter step. Wrap
any code that can error in try-catch:

function val = userFcn(x)
try

val = ... % code that can error
catch

val = NaN;
end

The objective and constraints must yield proper (double) values at the initial
point.

Direct Step
The following variables are used in defining the direct step:
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• H denotes the Hessian of the Lagrangian of fμ:

H f x g x h xi i
i

j j
j

= + +∑ ∑∇ ∇ ∇2 2 2( ) ( ) ( ). 
(6-52)

• Jg denotes the Jacobian of the constraint function g.

• Jh denotes the Jacobian of the constraint function h.

• S = diag(s).

• λ denotes the Lagrange multiplier vector associated with constraints g

• Λ = diag(λ).

• y denotes the Lagrange multiplier vector associated with h.

• e denote the vector of ones the same size as g.

Equation 6-53 defines the direct step (Δx, Δs):

H J J
S S

J I
J S I

x
s
y

h
T

g
T

h

g

0
0 0

0 0
0

Λ
Δ
Δ
Δ
Δ

−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥

= −

− −
−

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∇f J y J
S e

h
g s

h
T

g
T

  .

(6-53)

This equation comes directly from attempting to solve Equation 3-2 and
Equation 3-3 using a linearized Lagrangian.

In order to solve this equation for (Δx, Δs), the algorithm makes an LDL
factorization of the matrix. (See Example 3 — The Structure of D in the
MATLAB ldl function reference page.) This is the most computationally
expensive step. One result of this factorization is a determination of whether
the projected Hessian is positive definite or not; if not, the algorithm uses a
conjugate gradient step, described in the next section.

Conjugate Gradient Step
The conjugate gradient approach to solving the approximate problem
Equation 6-51 is similar to other conjugate gradient calculations. In this
case, the algorithm adjusts both x and s, keeping the slacks s positive. The
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approach is to minimize a quadratic approximation to the approximate
problem in a trust region, subject to linearized constraints.

Specifically, let R denote the radius of the trust region, and let other variables
be defined as in “Direct Step” on page 6-44. The algorithm obtains Lagrange
multipliers by approximately solving the KKT equations

∇ ∇ ∇ ∇x x i i
i

j j
j

L f x g x y h x= + + =∑ ∑( ) ( ) ( ) , 0

in the least-squares sense, subject to λ being positive. Then it takes a step
(Δx, Δs) to approximately solve

min ,
,Δ Δ

Δ Δ Δ Δ Δ ΛΔ
x s

T T
xx

T Tf x x L x e S s s S s∇ ∇2+ + +− −1
2

1
2

1 1
(6-54)

subject to the linearized constraints

g x J x s h x J xg h( ) , ( ) .+ + = + =Δ Δ Δ0 0  (6-55)

To solve Equation 6-55, the algorithm tries to minimize a norm of the
linearized constraints inside a region with radius scaled by R. Then Equation
6-54 is solved with the constraints being to match the residual from solving
Equation 6-55, staying within the trust region of radius R, and keeping s
strictly positive. For details of the algorithm and the derivation, see [40], [41],
and [51]. For another description of conjugate gradients, see “Preconditioned
Conjugate Gradient Method” on page 6-29.

Interior-Point Algorithm Options
Here are the meanings and effects of several options in the interior-point
algorithm.

• AlwaysHonorConstraints—When set to 'bounds', every iterate satisfies
the bound constraints you have set. When set to 'none', the algorithm may
violate bounds during intermediate iterations.

• Hessian — When set to:

- 'user-supplied', pass the Hessian of the Lagrangian in a user-supplied
function, whose function handle must be given in the option HessFcn.
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- 'bfgs', fmincon calculates the Hessian by a dense quasi-Newton
approximation.

- 'lbfgs', fmincon calculates the Hessian by a limited-memory,
large-scale quasi-Newton approximation.

- 'fin-diff-grads', fmincon calculates a Hessian-times-vector product
by finite differences of the gradient(s); other options need to be set
appropriately.

You can also give a separate function for Hessian-times-vector. See
“Hessian” on page 10-49 for more details on these options.

• InitBarrierParam— The starting value for μ. By default, this is 0.1.

• ScaleProblem — When set to 'obj-and-constr', the algorithm works
with scaled versions of the objective function and constraints. It carefully
scales them by their initial values. Disable scaling by setting ScaleProblem
to 'none'.

• SubproblemAlgorithm— Determines whether or not to attempt the direct
Newton step. The default setting 'ldl-factorization' allows this type of
step to be attempted. The setting 'cg' allows only conjugate gradient steps.

For a complete list of options see “Interior-Point Algorithm” on page 10-60.

fminbnd Algorithm
fminbnd is a solver available in any MATLAB installation. It solves for a local
minimum in one dimension within a bounded interval. It is not based on
derivatives. Instead, it uses golden-section search and parabolic interpolation.

fseminf Problem Formulation and Algorithm

fseminf Problem Formulation
fseminf addresses optimization problems with additional types of constraints
compared to those addressed by fmincon. The formulation of fmincon is

min ( )
x

f x
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such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

fseminf adds the following set of semi-infinite constraints to those already
given. For wj in a one- or two-dimensional bounded interval or rectangle Ij, for
a vector of continuous functions K(x, w), the constraints are

Kj(x, wj) ≤ 0 for all wj Ij.

The term “dimension” of an fseminf problem means the maximal dimension of
the constraint set I: 1 if all Ij are intervals, and 2 if at least one Ij is a rectangle.
The size of the vector of K does not enter into this concept of dimension.

The reason this is called semi-infinite programming is that there are a finite
number of variables (x and wj), but an infinite number of constraints. This
is because the constraints on x are over a set of continuous intervals or
rectangles Ij, which contains an infinite number of points, so there are an
infinite number of constraints: Kj(x, wj) ≤ 0 for an infinite number of points wj.

You might think a problem with an infinite number of constraints is
impossible to solve. fseminf addresses this by reformulating the problem to
an equivalent one that has two stages: a maximization and a minimization.
The semi-infinite constraints are reformulated as

max ( , ) ,..., ,
w I

j j
j j

K x w j K
∈

≤ =0 1 for all 
(6-56)

where |K| is the number of components of the vector K; i.e., the number
of semi-infinite constraint functions. For fixed x, this is an ordinary
maximization over bounded intervals or rectangles.

fseminf further simplifies the problem by making piecewise quadratic or
cubic approximations κj(x, wj) to the functions Kj(x, wj), for each x that the
solver visits. fseminf considers only the maxima of the interpolation function
κj(x, wj), instead of Kj(x, wj), in Equation 6-56. This reduces the original
problem, minimizing a semi-infinitely constrained function, to a problem
with a finite number of constraints.

Sampling Points. Your semi-infinite constraint function must provide
a set of sampling points, points used in making the quadratic or cubic
approximations. To accomplish this, it should contain:
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• The initial spacing s between sampling points w

• A way of generating the set of sampling points w from s

The initial spacing s is a |K|-by-2 matrix. The jth row of s represents the
spacing for neighboring sampling points for the constraint function Kj. If
Kj depends on a one-dimensional wj, set s(j,2) = 0. fseminf updates the
matrix s in subsequent iterations.

fseminf uses the matrix s to generate the sampling points w, which it then
uses to create the approximation κj(x, wj). Your procedure for generating w
from s should keep the same intervals or rectangles Ij during the optimization.

Example of Creating Sampling Points. Consider a problem with two
semi-infinite constraints, K1 and K2. K1 has one-dimensional w1, and K2
has two-dimensional w2. The following code generates a sampling set from
w1 = 2 to 12:

% Initial sampling interval
if isnan(s(1,1))

s(1,1) = .2;
s(1,2) = 0;

end

% Sampling set
w1 = 2:s(1,1):12;

fseminf specifies s as NaN when it first calls your constraint function.
Checking for this allows you to set the initial sampling interval.

The following code generates a sampling set from w2 in a square, with each
component going from 1 to 100, initially sampled more often in the first
component than the second:

% Initial sampling interval
if isnan(s(1,1))

s(2,1) = 0.2;
s(2,2) = 0.5;

end

% Sampling set
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w2x = 1:s(2,1):100;
w2y = 1:s(2,2):100;
[wx,wy] = meshgrid(w2x,w2y);

The preceding code snippets can be simplified as follows:

% Initial sampling interval
if isnan(s(1,1))

s = [0.2 0;0.2 0.5];
end

% Sampling set
w1 = 2:s(1,1):12;
w2x = 1:s(2,1):100;
w2y = 1:s(2,2):100;
[wx,wy] = meshgrid(w2x,w2y);

fseminf Algorithm
fseminf essentially reduces the problem of semi-infinite programming to a
problem addressed by fmincon. fseminf takes the following steps to solve
semi-infinite programming problems:

1 At the current value of x, fseminf identifies all the wj,i such that the
interpolation κj(x, wj,i) is a local maximum. (The maximum refers to
varying w for fixed x.)

2 fseminf takes one iteration step in the solution of the fmincon problem:

min ( )
x

f x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u, where
c(x) is augmented with all the maxima of κj(x, wj) taken over all wj Ij, which
is equal to the maxima over j and i of κj(x, wj,i).

3 fseminf checks if any stopping criterion is met at the new point x (to halt
the iterations); if not, it continues to step 4.
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4 fseminf checks if the discretization of the semi-infinite constraints needs
updating, and updates the sampling points appropriately. This provides an
updated approximation κj(x, wj). Then it continues at step 1.

6-51



6 Optimization Algorithms and Examples

Nonlinear Inequality Constraints
This example shows how to solve a scalar minimization problem with
nonlinear inequality constraints. The problem is to find x that solves

min ( ) .
x

xf x e x x x x x= + + + +( )1 4 2 4 2 11
2

2
2

1 2 2 (6-57)

subject to the constraints

x1x2 – x1 – x2 ≤ –1.5,
x1x2 ≥ –10.

Because neither of the constraints is linear, you cannot pass the constraints to
fmincon at the command line. Instead you can create a second file, confun.m,
that returns the value at both constraints at the current x in a vector c. The
constrained optimizer, fmincon, is then invoked. Because fmincon expects
the constraints to be written in the form c(x) ≤ 0, you must rewrite your
constraints in the form

x1x2 – x1 – x2 + 1.5 ≤ 0,
–x1x2 –10 ≤ 0.

(6-58)

Step 1: Write a file objfun.m for the objective
function.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

Step 2: Write a file confun.m for the constraints.

function [c, ceq] = confun(x)
% Nonlinear inequality constraints
c = [1.5 + x(1)*x(2) - x(1) - x(2);

-x(1)*x(2) - 10];
% Nonlinear equality constraints
ceq = [];
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Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution
options = optimoptions(@fmincon,'Algorithm','sqp');
[x,fval] = ...
fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options);

fmincon produces the solution x with function value fval:

x,fval
x =

-9.5474 1.0474
fval =

0.0236

You can evaluate the constraints at the solution by entering

[c,ceq] = confun(x)

This returns numbers close to zero, such as

c =

1.0e-14 *

-0.6661
0.7105

ceq =

[]

Note that both constraint values are, to within a small tolerance, less than or
equal to 0; that is, x satisfies c(x) ≤ 0.
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Nonlinear Constraints with Gradients
Ordinarily the medium-scale minimization routines use numerical gradients
calculated by finite-difference approximation. This procedure systematically
perturbs each of the variables in order to calculate function and constraint
partial derivatives. Alternatively, you can provide a function to compute
partial derivatives analytically. Typically, the problem is solved more
accurately and efficiently if such a function is provided.

To solve

min ( ) .
x

xf x e x x x x x= + + + +( )1 4 2 4 2 11
2

2
2

1 2 2

using analytically determined gradients, do the following.

Step 1: Write a file for the objective function and
gradient.

function [f,gradf] = objfungrad(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
% Gradient of the objective function
if nargout > 1

gradf = [ f + exp(x(1)) * (8*x(1) + 4*x(2)),
exp(x(1))*(4*x(1)+4*x(2)+2)];

end

Step 2: Write a file for the nonlinear constraints and
the gradients of the nonlinear constraints.

function [c,ceq,DC,DCeq] = confungrad(x)
c(1) = 1.5 + x(1) * x(2) - x(1) - x(2); %Inequality constraints
c(2) = -x(1) * x(2)-10;
% No nonlinear equality constraints
ceq=[];
% Gradient of the constraints
if nargout > 2

DC= [x(2)-1, -x(2);
x(1)-1, -x(1)];
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DCeq = [];
end

gradf contains the partial derivatives of the objective function, f, returned by
objfungrad(x), with respect to each of the elements in x:

∇f
e x x x x x e x x

e x x

x x

x
=

+ + + +( ) + +( )

+ +( )

⎡
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1 1

1
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1
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2
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⎢

⎤

⎦

⎥
⎥
.

(6-59)

The columns of DC contain the partial derivatives for each respective
constraint (i.e., the ith column of DC is the partial derivative of the ith
constraint with respect to x). So in the above example, DC is

∂
∂

∂
∂
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∂
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Since you are providing the gradient of the objective in objfungrad.m and
the gradient of the constraints in confungrad.m, you must tell fmincon that
these files contain this additional information. Use optimoptions to turn the
options GradObj and GradConstr to 'on' in the example’s existing options:

options = optimoptions(options,'GradObj','on','GradConstr','on');

If you do not set these options to 'on' in the options structure, fmincon does
not use the analytic gradients.

The arguments lb and ub place lower and upper bounds on the independent
variables in x. In this example, there are no bound constraints and so they
are both set to [].

Step 3: Invoke the constrained optimization routine.
x0 = [-1,1]; % Starting guess
options = optimoptions(@fmincon,'Algorithm','sqp');
options = optimoptions(options,'GradObj','on','GradConstr','on');
lb = [ ]; ub = [ ]; % No upper or lower bounds
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[x,fval] = fmincon(@objfungrad,x0,[],[],[],[],lb,ub,...
@confungrad,options);

The results:

x,fval
x =

-9.5474 1.0474
fval =

0.0236

[c,ceq] = confungrad(x) % Check the constraint values at x
c =

1.0e-13 *
-0.1066
0.1066

ceq =
[]
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fmincon Interior-Point Algorithm with Analytic Hessian
The fmincon interior-point algorithm can accept a Hessian function as an
input. When you supply a Hessian, you may obtain a faster, more accurate
solution to a constrained minimization problem.

The constraint set for this example is the intersection of the interior of two
cones—one pointing up, and one pointing down. The constraint function c
is a two-component vector, one component for each cone. Since this is a
three-dimensional example, the gradient of the constraint c is a 3-by-2 matrix.

function [c ceq gradc gradceq] = twocone(x)
% This constraint is two cones, z > -10 + r
% and z < 3 - r

ceq = [];
r = sqrt(x(1)^2 + x(2)^2);
c = [-10+r-x(3);

x(3)-3+r];

if nargout > 2

gradceq = [];
gradc = [x(1)/r,x(1)/r;

x(2)/r,x(2)/r;
-1,1];

end

The objective function grows rapidly negative as the x(1) coordinate becomes
negative. Its gradient is a three-element vector.

function [f gradf] = bigtoleft(x)
% This is a simple function that grows rapidly negative
% as x(1) gets negative
%
f=10*x(1)^3+x(1)*x(2)^2+x(3)*(x(1)^2+x(2)^2);

if nargout > 1
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gradf=[30*x(1)^2+x(2)^2+2*x(3)*x(1);
2*x(1)*x(2)+2*x(3)*x(2);
(x(1)^2+x(2)^2)];

end

Here is a plot of the problem. The shading represents the value of the
objective function. You can see that the objective function is minimized near
x = [-6.5,0,-3.5]:
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The Hessian of the Lagrangian is given by the equation:

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).  = + +∑ ∑
The following function computes the Hessian at a point x with Lagrange
multiplier structure lambda:

function h = hessinterior(x,lambda)

6-59



6 Optimization Algorithms and Examples

h = [60*x(1)+2*x(3),2*x(2),2*x(1);
2*x(2),2*(x(1)+x(3)),2*x(2);
2*x(1),2*x(2),0];% Hessian of f

r = sqrt(x(1)^2+x(2)^2);% radius
rinv3 = 1/r^3;
hessc = [(x(2))^2*rinv3,-x(1)*x(2)*rinv3,0;

-x(1)*x(2)*rinv3,x(1)^2*rinv3,0;
0,0,0];% Hessian of both c(1) and c(2)

h = h + lambda.ineqnonlin(1)*hessc + lambda.ineqnonlin(2)*hessc;

Run this problem using the interior-point algorithm in fmincon. To do this
using the Optimization app:

1 Set the problem as in the following figure.

2 For iterative output, scroll to the bottom of the Options pane and select
Level of display, iterative.
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3 In the Options pane, give the analytic Hessian function handle.

4 Under Run solver and view results, click Start.
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To perform the minimization at the command line:

1 Set options as follows:

options =
optimoptions(@fmincon,'Algorithm','interior-point',...

'Display','off','GradObj','on','GradConstr','on',...
'Hessian','user-supplied','HessFcn',@hessinterior);

2 Run fmincon with starting point [–1,–1,–1], using the options structure:

[x fval mflag output] = fmincon(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,options)

The output is:

x =
-6.5000 -0.0000 -3.5000
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fval =
-2.8941e+03

mflag =
1

output =
iterations: 6
funcCount: 7

constrviolation: 0
stepsize: 3.0479e-05

algorithm: 'interior-point'
firstorderopt: 5.9812e-05
cgiterations: 3

message: 'Local minimum found that satisfies the constraints.

Optimization complet...'

If you do not use a Hessian function, fmincon takes 9 iterations to converge,
instead of 6:

options = optimoptions(@fmincon,'Algorithm','interior-point',...
'Display','off','GradObj','on','GradConstr','on');

[x fval mflag output]=fmincon(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,options)

x =
-6.5000 -0.0000 -3.5000

fval =
-2.8941e+03

mflag =
1

output =
iterations: 9
funcCount: 13
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constrviolation: 2.9391e-08
stepsize: 6.4842e-04

algorithm: 'interior-point'
firstorderopt: 1.4235e-04
cgiterations: 0

message: 'Local minimum found that satisfies the constraints.

Optimization complet...'

Both runs lead to similar solutions, but the F-count and number of iterations
are lower when using an analytic Hessian.
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Nonlinear Equality and Inequality Constraints
For routines that permit equality constraints, nonlinear equality constraints
must be computed with the nonlinear inequality constraints. For linear
equalities, the coefficients of the equalities are passed in through the matrix
Aeq and the right-hand-side vector beq.

For example, if you have the nonlinear equality constraint x x1
2

2 1+ = and the
nonlinear inequality constraint x1x2 ≥ –10, rewrite them as

x x
x x
1
2

2

1 2

1 0
10 0

+ − =
− − ≤

,
,

and then solve the problem using the following steps.

Step 1: Write a file objfun.m.

function f = objfun(x)
f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);

Step 2: Write a file confuneq.m for the nonlinear
constraints.

function [c, ceq] = confuneq(x)
% Nonlinear inequality constraints
c = -x(1)*x(2) - 10;
% Nonlinear equality constraints
ceq = x(1)^2 + x(2) - 1;

Step 3: Invoke constrained optimization routine.

x0 = [-1,1]; % Make a starting guess at the solution
options = optimoptions(@fmincon,'Algorithm','sqp');
[x,fval] = fmincon(@objfun,x0,[],[],[],[],[],[],...

@confuneq,options);

After 21 function evaluations, the solution produced is
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x,fval
x =

-0.7529 0.4332
fval =

1.5093

[c,ceq] = confuneq(x) % Check the constraint values at x

c =
-9.6739

ceq =
5.3291e-15

Note that ceq is equal to 0 within the default tolerance on the constraints of
1.0e-006 and that c is less than or equal to 0, as desired.
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Optimization App with the fmincon Solver
This example shows how to use the Optimization app with the fmincon
solver to minimize a quadratic subject to linear and nonlinear constraints
and bounds.

Consider the problem of finding [x1, x2] that solves

min ( )
x

f x x x= +1
2

2
2
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(nonlinear inequality))

The starting guess for this problem is x1 = 3 and x2 = 1.

Step 1: Write a file objecfun.m for the objective
function.

function f = objecfun(x)
f = x(1)^2 + x(2)^2;

Step 2: Write a file nonlconstr.m for the nonlinear
constraints.

function [c,ceq] = nonlconstr(x)
c = [-x(1)^2 - x(2)^2 + 1;

-9*x(1)^2 - x(2)^2 + 9;
-x(1)^2 + x(2);
-x(2)^2 + x(1)];
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ceq = [];

Step 3: Set up and run the problem with the
Optimization app.

1 Enter optimtool in the Command Window to open the Optimization app.

2 Select fmincon from the selection of solvers and change the Algorithm
field to Active set.

3 Enter @objecfun in the Objective function field to call the objecfun.m
file.

4 Enter [3;1] in the Start point field.

5 Define the constraints.

• Set the bound 0.5 ≤ x1 by entering [0.5,-Inf] in the Lower field. The
-Inf entry means there is no lower bound on x2.

• Set the linear inequality constraint by entering [-1 -1] in the A field
and enter -1 in the b field.

• Set the nonlinear constraints by entering @nonlconstr in the Nonlinear
constraint function field.
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6 In the Options pane, expand the Display to command window option
if necessary, and select Iterative to show algorithm information at the
Command Window for each iteration.

7 Click the Start button as shown in the following figure.

8 When the algorithm terminates, under Run solver and view results the
following information is displayed:
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• The Current iteration value when the algorithm terminated, which
for this example is 7.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.0000000268595803

• The algorithm termination message:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

• The final point, which for this example is

1
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1

9 In the Command Window, the algorithm information is displayed for each
iteration:

Max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 10 2 Infeasible start point

1 6 4.84298 -0.1322 1 -5.22 1.74

2 9 4.0251 -0.01168 1 -4.39 4.08 Hessian modified twice

3 12 2.42704 -0.03214 1 -3.85 1.09

4 15 2.03615 -0.004728 1 -3.04 0.995 Hessian modified twice

5 18 2.00033 -5.596e-005 1 -2.82 0.0664 Hessian modified twice

6 21 2 -5.327e-009 1 -2.81 0.000522 Hessian modified twice

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):

lower upper ineqlin ineqnonlin

3

4
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Minimization with Bound Constraints and Banded
Preconditioner

The goal in this problem is to minimize the nonlinear function

f x x x x x x xi i i i
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such that -10.0 ≤ xi ≤ 10.0, where n is 800 (n should be a multiple of 4), p = 7/3,
and x0 = xn + 1 = 0.

Step 1: Write a file tbroyfg.m that computes the
objective function and the gradient of the objective
The tbroyfg.m file computes the function value and gradient. This file is
long and is not included here. You can see the code for this function using
the command

type tbroyfg

The sparsity pattern of the Hessian matrix has been predetermined and
stored in the file tbroyhstr.mat. The sparsity structure for the Hessian of
this problem is banded, as you can see in the following spy plot.

load tbroyhstr
spy(Hstr)
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In this plot, the center stripe is itself a five-banded matrix. The following
plot shows the matrix more clearly:

spy(Hstr(1:20,1:20))
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Use optimoptions to set the HessPattern parameter to Hstr. When a
problem as large as this has obvious sparsity structure, not setting the
HessPattern parameter requires a huge amount of unnecessary memory and
computation. This is because fmincon attempts to use finite differencing on
a full Hessian matrix of 640,000 nonzero entries.

You must also set the GradObj parameter to 'on' using optimoptions, since
the gradient is computed in tbroyfg.m. Then execute fmincon as shown
in Step 2.

Step 2: Call a nonlinear minimization routine with a
starting point xstart.
fun = @tbroyfg;
load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimoptions('fmincon','GradObj','on','HessPattern',Hstr,...

'Algorithm','trust-region-reflective');

[x,fval,exitflag,output] = ...
fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

After seven iterations, the exitflag, fval, and output values are

exitflag =
3

fval =
270.4790

output =
iterations: 7
funcCount: 8

cgiterations: 18
firstorderopt: 0.0163

algorithm: 'trust-region-reflective'
message: 'Local minimum possible.
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fmincon stopped because the final change in func...'
constrviolation: 0

For bound constrained problems, the first-order optimality is the infinity
norm of v.*g, where v is defined as in “Box Constraints” on page 6-30, and g
is the gradient.

Because of the five-banded center stripe, you can improve the solution by using
a five-banded preconditioner instead of the default diagonal preconditioner.
Using the optimoptions function, reset the PrecondBandWidth parameter to
2 and solve the problem again. (The bandwidth is the number of upper (or
lower) diagonals, not counting the main diagonal.)

fun = @tbroyfg;
load tbroyhstr % Get Hstr, structure of the Hessian
n = 800;
xstart = -ones(n,1); xstart(2:2:n,1) = 1;
lb = -10*ones(n,1); ub = -lb;
options = optimoptions('fmincon','GradObj','on','HessPattern',Hstr, ...

'Algorithm','trust-region-reflective','PrecondBandWidth',2);
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],[],[],lb,ub,[],options);

The number of iterations actually goes up by two; however the total number
of CG iterations drops from 18 to 15. The first-order optimality measure is
reduced by a factor of 1e-3:

exitflag =
3

fval =
270.4790

output =
iterations: 9
funcCount: 10

cgiterations: 15
firstorderopt: 7.5340e-05

algorithm: 'trust-region-reflective'
message: 'Local minimum possible.
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fmincon stopped because the final change in func...'
constrviolation: 0
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Minimization with Linear Equality Constraints
The trust-region reflective method for fmincon can handle linear equality
constraints if no other constraints exist. Suppose you want to minimize
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subject to some linear equality constraints. The objective function is coded in
the function brownfgh.m. This example takes n = 1000. Furthermore, the
browneq.mat file contains matrices Aeq and beq that represent the linear
constraints Aeq·x = beq. Aeq has 100 rows representing 100 linear constraints
(so Aeq is a 100-by-1000 matrix).

Step 1: Write a file brownfgh.m that computes the
objective function, the gradient of the objective, and
the sparse tridiagonal Hessian matrix.
The file is lengthy so is not included here. View the code with the command

type brownfgh

Because brownfgh computes the gradient and Hessian values as well as
the objective function, you need to use optimoptions to indicate that this
information is available in brownfgh, using the GradObj and Hessian options.

The sparse matrix Aeq and vector beq are available in the file browneq.mat:

load browneq

The linear constraint system is 100-by-1000, has unstructured sparsity (use
spy(Aeq) to view the sparsity structure), and is not too badly ill-conditioned:

condest(Aeq*Aeq')
ans =

2.9310e+006
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Step 2: Call a nonlinear minimization routine with a
starting point xstart.

fun = @brownfgh;
load browneq % Get Aeq and beq, the linear equalities
n = 1000;
xstart = -ones(n,1); xstart(2:2:n) = 1;
options = optimoptions('fmincon','GradObj','on','Hessian','user-supplied',.

'Algorithm','trust-region-reflective');
[x,fval,exitflag,output] = ...

fmincon(fun,xstart,[],[],Aeq,beq,[],[],[],options);

fmincon prints the following exit message:

Local minimum possible.

fmincon stopped because the final change in function value relative to

its initial value is less than the default value of the function tolerance.

The exitflag value of 3 also indicates that the algorithm terminated because
the change in the objective function value was less than the tolerance TolFun.
The final function value is given by fval.

exitflag,fval,output

exitflag =
3

fval =
205.9313

output =
iterations: 22
funcCount: 23

cgiterations: 30
firstorderopt: 0.0027

algorithm: 'trust-region-reflective'
message: 'Local minimum possible.

fmincon stopped because the final change in func...'
constrviolation: 2.2293e-13
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The linear equalities are satisfied at x.

norm(Aeq*x-beq)

ans =
1.1919e-12
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Minimization with Dense Structured Hessian, Linear
Equalities

In this section...

“Hessian Multiply Function for Lower Memory” on page 6-80

“Step 1: Write a file brownvv.m that computes the objective function, the
gradient, and the sparse part of the Hessian.” on page 6-81

“Step 2: Write a function to compute Hessian-matrix products for H given a
matrix Y.” on page 6-81

“Step 3: Call a nonlinear minimization routine with a starting point and
linear equality constraints.” on page 6-82

“Preconditioning” on page 6-84

Hessian Multiply Function for Lower Memory
The fmincon interior-point and trust-region-reflective algorithms,
and the fminunc trust-region algorithm can solve problems where the
Hessian is dense but structured. For these problems, fmincon and fminunc
do not compute H*Y with the Hessian H directly, because forming H would
be memory-intensive. Instead, you must provide fmincon or fminunc with a
function that, given a matrix Y and information about H, computes W = H*Y.

In this example, the objective function is nonlinear and linear equalities
exist so fmincon is used. The description applies to the trust-region
reflective algorithm; the fminunc trust-region algorithm is similar. For the
interior-point algorithm, see the 'HessMult' option in “Hessian” on page
10-49. The objective function has the structure

f x f x x VV xT T( ) = ( ) −ˆ ,
1
2

where V is a 1000-by-2 matrix. The Hessian of f is dense, but the Hessian of

f̂ is sparse. If the Hessian of f̂ is Ĥ , then H, the Hessian of f, is

H H VV T= −ˆ .
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To avoid excessive memory usage that could happen by working with H
directly, the example provides a Hessian multiply function, hmfleq1. This
function, when passed a matrix Y, uses sparse matrices Hinfo, which

corresponds to Ĥ , and V to compute the Hessian matrix product

W = H*Y = (Hinfo - V*V')*Y

In this example, the Hessian multiply function needs Ĥ and V to compute the
Hessian matrix product. V is a constant, so you can capture V in a function
handle to an anonymous function.

However, Ĥ is not a constant and must be computed at the current x. You

can do this by computing Ĥ in the objective function and returning Ĥ
as Hinfo in the third output argument. By using optimoptions to set the
'Hessian' options to 'on', fmincon knows to get the Hinfo value from the
objective function and pass it to the Hessian multiply function hmfleq1.

Step 1: Write a file brownvv.m that computes the
objective function, the gradient, and the sparse part
of the Hessian.
The example passes brownvv to fmincon as the objective function. The
brownvv.m file is long and is not included here. You can view the code with
the command

type brownvv

Because brownvv computes the gradient and part of the Hessian as well as
the objective function, the example (Step 3) uses optimoptions to set the
GradObj and Hessian options to 'on'.

Step 2: Write a function to compute Hessian-matrix
products for H given a matrix Y.
Now, define a function hmfleq1 that uses Hinfo, which is computed
in brownvv, and V, which you can capture in a function handle to an
anonymous function, to compute the Hessian matrix product W where
W = H*Y = (Hinfo - V*V')*Y. This function must have the form
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W = hmfleq1(Hinfo,Y)

The first argument must be the same as the third argument returned by the
objective function brownvv. The second argument to the Hessian multiply
function is the matrix Y (of W = H*Y).

Because fmincon expects the second argument Y to be used to form the
Hessian matrix product, Y is always a matrix with n rows where n is the
number of dimensions in the problem. The number of columns in Y can vary.
Finally, you can use a function handle to an anonymous function to capture
V, so V can be the third argument to 'hmfleqq'.

function W = hmfleq1(Hinfo,Y,V);
%HMFLEQ1 Hessian-matrix product function for BROWNVV objective.
% W = hmfleq1(Hinfo,Y,V) computes W = (Hinfo-V*V')*Y
% where Hinfo is a sparse matrix computed by BROWNVV
% and V is a 2 column matrix.
W = Hinfo*Y - V*(V'*Y);

Note The function hmfleq1 is available in the optimdemos folder as
hmfleq1.m.

Step 3: Call a nonlinear minimization routine with a
starting point and linear equality constraints.
Load the problem parameter, V, and the sparse equality constraint matrices,
Aeq and beq, from fleq1.mat, which is available in the optimdemos folder.
Use optimoptions to set the GradObj and Hessian options to 'on' and to set
the HessMult option to a function handle that points to hmfleq1. Call fmincon
with objective function brownvv and with V as an additional parameter:

function [fval, exitflag, output, x] = runfleq1
% RUNFLEQ1 demonstrates 'HessMult' option for FMINCON with linear
% equalities.

problem = load('fleq1'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
n = 1000; % problem dimension
xstart = -ones(n,1); xstart(2:2:n,1) = ones(length(2:2:n),1); % starting po
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options = optimoptions(@fmincon,'Algorithm','trust-region-reflective','Grad
'Hessian','user-supplied','HessMult',@(Hinfo,Y)hmfleq1(Hinfo,Y,V),'Disp
'TolFun',1e-9);

[x,fval,exitflag,output] = fmincon(@(x)brownvv(x,V),xstart,[],[],Aeq,beq,[]
[],options);

To run the preceding code, enter

[fval,exitflag,output,x] = runfleq1;

Because the iterative display was set using optimoptions, this command
generates the following iterative display:

Norm of First-order

Iteration f(x) step optimality CG-iterations

0 1997.07 916

1 1072.57 6.31716 465 1

2 480.247 8.19711 201 2

3 136.982 10.3039 78.1 2

4 44.416 9.04685 16.7 2

5 44.416 100 16.7 2

6 44.416 25 16.7 0

7 -9.05631 6.25 52.9 0

8 -317.437 12.5 91.7 1

9 -405.381 12.5 1.11e+003 1

10 -451.161 3.125 327 4

11 -482.688 0.78125 303 5

12 -547.427 1.5625 187 5

13 -610.42 1.5625 251 7

14 -711.522 1.5625 143 3

15 -802.98 3.125 165 3

16 -820.431 1.13329 32.9 3

17 -822.996 0.492813 7.61 2

18 -823.236 0.223154 1.68 3

19 -823.245 0.056205 0.529 3

20 -823.246 0.0150139 0.0342 5

21 -823.246 0.00479085 0.0152 7

22 -823.246 0.00353697 0.00828 9

23 -823.246 0.000884242 0.005 9

24 -823.246 0.0012715 0.00125 9
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25 -823.246 0.000317876 0.0025 9

Local minimum possible.

fmincon stopped because the final change in function value relative to

its initial value is less than the selected value of the function tolerance.

Convergence is rapid for a problem of this size with the PCG iteration cost
increasing modestly as the optimization progresses. Feasibility of the equality
constraints is maintained at the solution.

problem = load('fleq1'); % Get V, Aeq, beq
V = problem.V; Aeq = problem.Aeq; beq = problem.beq;
norm(Aeq*x-beq,inf)

ans =
2.4869e-14

Preconditioning
In this example, fmincon cannot use H to compute a preconditioner because H
only exists implicitly. Instead of H, fmincon uses Hinfo, the third argument
returned by brownvv, to compute a preconditioner. Hinfo is a good choice
because it is the same size as H and approximates H to some degree. If Hinfo
were not the same size as H, fmincon would compute a preconditioner based
on some diagonal scaling matrices determined from the algorithm. Typically,
this would not perform as well.
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Symbolic Math Toolbox Calculates Gradients and Hessians
If you have a Symbolic Math Toolbox license, you can easily calculate analytic
gradients and Hessians for objective and constraint functions. There are two
relevant Symbolic Math Toolbox functions:

• jacobian generates the gradient of a scalar function, and generates a
matrix of the partial derivatives of a vector function. So, for example, you
can obtain the Hessian matrix, the second derivatives of the objective
function, by applying jacobian to the gradient. Part of this example shows
how to use jacobian to generate symbolic gradients and Hessians of
objective and constraint functions.

• matlabFunction generates either an anonymous function or a file that
calculates the values of a symbolic expression. This example shows how
to use matlabFunction to generate files that evaluate the objective and
constraint function and their derivatives at arbitrary points.

Consider the electrostatics problem of placing 10 electrons in a conducting
body. The electrons will arrange themselves so as to minimize their total
potential energy, subject to the constraint of lying inside the body. It is well
known that all the electrons will be on the boundary of the body at a minimum.
The electrons are indistinguishable, so there is no unique minimum for this
problem (permuting the electrons in one solution gives another valid solution).
This example was inspired by Dolan, Moré, and Munson [58].

This example is a conducting body defined by the following inequalities:

z x y≤ − − (6-61)

x y z2 2 21 1+ + +( ) ≤ . (6-62)

This body looks like a pyramid on a sphere.
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There is a slight gap between the upper and lower surfaces of the figure. This
is an artifact of the general plotting routine used to create the figure. This
routine erases any rectangular patch on one surface that touches the other
surface.

The syntax and structures of the two sets of toolbox functions differ. In
particular, symbolic variables are real or complex scalars, but Optimization
Toolbox functions pass vector arguments. So there are several steps to take
to generate symbolically the objective function, constraints, and all their
requisite derivatives, in a form suitable for the interior-point algorithm of
fmincon:
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1 “Create the Variables” on page 6-87

2 “Include the Linear Constraints” on page 6-88

3 “Create the Nonlinear Constraints, Their Gradients and Hessians” on page
6-90

4 “Create the Objective Function, Its Gradient and Hessian” on page 6-91

5 “Create the Objective Function File” on page 6-92

6 “Create the Constraint Function File” on page 6-92

7 “Generate the Hessian Files” on page 6-93

8 “Run the Optimization” on page 6-94

9 “Clear the Symbolic Variable Assumptions” on page 6-99

To see the efficiency in using gradients and Hessians, see “Compare to
Optimization Without Gradients and Hessians” on page 6-97.

Create the Variables
Generate a symbolic vector x as a 30-by-1 vector composed of real symbolic
variables xij, i between 1 and 10, and j between 1 and 3. These variables
represent the three coordinates of electron i: xi1 corresponds to the x
coordinate, xi2 corresponds to the y coordinate, and xi3 corresponds to the
z coordinate.

x = cell(3, 10);
for i = 1:10

for j = 1:3
x{j,i} = sprintf('x%d%d',i,j);

end
end
x = x(:); % now x is a 30-by-1 vector
x = sym(x, 'real');

The vector x is:

x
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x =
x11
x12
x13
x21
x22
x23
x31
x32
x33
x41
x42
x43
x51
x52
x53
x61
x62
x63
x71
x72
x73
x81
x82
x83
x91
x92
x93

x101
x102
x103

Include the Linear Constraints
Write the linear constraints in Equation 6-61,

z ≤ –|x| – |y|,

as a set of four linear inequalities for each electron:
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xi3 – xi1 – xi2 ≤ 0
xi3 – xi1 + xi2 ≤ 0
xi3 + xi1 – xi2 ≤ 0
xi3 + xi1 + xi2 ≤ 0

Therefore there are a total of 40 linear inequalities for this problem.

Write the inequalities in a structured way:

B = [1,1,1;-1,1,1;1,-1,1;-1,-1,1];

A = zeros(40,30);
for i=1:10

A(4*i-3:4*i,3*i-2:3*i) = B;
end

b = zeros(40,1);

You can see that A*x b represents the inequalities:

A*x

ans =
x11 + x12 + x13
x12 - x11 + x13
x11 - x12 + x13
x13 - x12 - x11
x21 + x22 + x23
x22 - x21 + x23
x21 - x22 + x23
x23 - x22 - x21
x31 + x32 + x33
x32 - x31 + x33
x31 - x32 + x33
x33 - x32 - x31
x41 + x42 + x43
x42 - x41 + x43
x41 - x42 + x43
x43 - x42 - x41
x51 + x52 + x53
x52 - x51 + x53
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x51 - x52 + x53
x53 - x52 - x51
x61 + x62 + x63
x62 - x61 + x63
x61 - x62 + x63
x63 - x62 - x61
x71 + x72 + x73
x72 - x71 + x73
x71 - x72 + x73
x73 - x72 - x71
x81 + x82 + x83
x82 - x81 + x83
x81 - x82 + x83
x83 - x82 - x81
x91 + x92 + x93
x92 - x91 + x93
x91 - x92 + x93
x93 - x92 - x91

x101 + x102 + x103
x102 - x101 + x103
x101 - x102 + x103
x103 - x102 - x101

Create the Nonlinear Constraints, Their Gradients
and Hessians
The nonlinear constraints in Equation 6-62 ,

x y z2 2 21 1+ + +( ) ≤ ,

are also structured. Generate the constraints, their gradients, and Hessians
as follows:

c = sym(zeros(1,10));
i = 1:10;
c = (x(3*i-2).^2 + x(3*i-1).^2 + (x(3*i)+1).^2 - 1).';

gradc = jacobian(c,x).'; % .' performs transpose

hessc = cell(1, 10);
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for i = 1:10
hessc{i} = jacobian(gradc(:,i),x);

end

The constraint vector c is a row vector, and the gradient of c(i) is represented
in the ith column of the matrix gradc. This is the correct form, as described
in “Nonlinear Constraints” on page 2-37.

The Hessian matrices, hessc{1}...hessc{10}, are square and symmetric. It is
better to store them in a cell array, as is done here, than in separate variables
such as hessc1, ..., hesssc10.

Use the .' syntax to transpose. The ' syntax means conjugate transpose,
which has different symbolic derivatives.

Create the Objective Function, Its Gradient and
Hessian
The objective function, potential energy, is the sum of the inverses of the
distances between each electron pair:

energy =
−<

∑ 1

x xi ji j

.

The distance is the square root of the sum of the squares of the differences in
the components of the vectors.

Calculate the energy, its gradient, and its Hessian as follows:

energy = sym(0);
for i = 1:3:25

for j = i+3:3:28
dist = x(i:i+2) - x(j:j+2);
energy = energy + 1/sqrt(dist.'*dist);

end
end

gradenergy = jacobian(energy,x).';
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hessenergy = jacobian(gradenergy,x);

Create the Objective Function File
The objective function should have two outputs, energy and gradenergy.
Put both functions in one vector when calling matlabFunction to reduce the
number of subexpressions that matlabFunction generates, and to return the
gradient only when the calling function (fmincon in this case) requests both
outputs. This example shows placing the resulting files in your current folder.
Of course, you can place them anywhere you like, as long as the folder is
on the MATLAB path.

currdir = [pwd filesep]; % You may need to use currdir = pwd
filename = [currdir,'demoenergy.m'];
matlabFunction(energy,gradenergy,'file',filename,'vars',{x});

This syntax causes matlabFunction to return energy as the first output, and
gradenergy as the second. It also takes a single input vector {x} instead of a
list of inputs x11, ..., x103.

The resulting file demoenergy.m contains, in part, the following lines or
similar ones:

function [energy,gradenergy] = demoenergy(in1)
%DEMOENERGY
% [ENERGY,GRADENERGY] = DEMOENERGY(IN1)
...
x101 = in1(28,:);
...
energy = 1./t140.^(1./2) + ...;
if nargout > 1

...
gradenergy = [(t174.*(t185 - 2.*x11))./2 - ...];

end

This function has the correct form for an objective function with a gradient;
see “Writing Scalar Objective Functions” on page 2-19.

Create the Constraint Function File
Generate the nonlinear constraint function, and put it in the correct format.
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filename = [currdir,'democonstr.m'];
matlabFunction(c,[],gradc,[],'file',filename,'vars',{x},...

'outputs',{'c','ceq','gradc','gradceq'});

The resulting file democonstr.m contains, in part, the following lines or
similar ones:

function [c,ceq,gradc,gradceq] = democonstr(in1)
%DEMOCONSTR
% [C,CEQ,GRADC,GRADCEQ] = DEMOCONSTR(IN1)
...
x101 = in1(28,:);
...
c = [t417.^2 + ...];
if nargout > 1

ceq = [];
end
if nargout > 2

gradc = [2.*x11,...];
end
if nargout > 3

gradceq = [];
end

This function has the correct form for a constraint function with a gradient;
see “Nonlinear Constraints” on page 2-37.

Generate the Hessian Files
To generate the Hessian of the Lagrangian for the problem, first generate files
for the energy Hessian and for the constraint Hessians.

The Hessian of the objective function, hessenergy, is a very large
symbolic expression, containing over 150,000 symbols, as evaluating
size(char(hessenergy)) shows. So it takes a substantial amount of time to
run matlabFunction(hessenergy).

To generate a file hessenergy.m, run the following two lines:

filename = [currdir,'hessenergy.m'];
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matlabFunction(hessenergy,'file',filename,'vars',{x});

In contrast, the Hessians of the constraint functions are small, and fast
to compute:

for i = 1:10
ii = num2str(i);
thename = ['hessc',ii];
filename = [currdir,thename,'.m'];
matlabFunction(hessc{i},'file',filename,'vars',{x});

end

After generating all the files for the objective and constraints, put them
together with the appropriate Lagrange multipliers in a file hessfinal.m as
follows:

function H = hessfinal(X,lambda)

%

% Call the function hessenergy to start

H = hessenergy(X);

% Add the Lagrange multipliers * the constraint Hessians

H = H + hessc1(X) * lambda.ineqnonlin(1);

H = H + hessc2(X) * lambda.ineqnonlin(2);

H = H + hessc3(X) * lambda.ineqnonlin(3);

H = H + hessc4(X) * lambda.ineqnonlin(4);

H = H + hessc5(X) * lambda.ineqnonlin(5);

H = H + hessc6(X) * lambda.ineqnonlin(6);

H = H + hessc7(X) * lambda.ineqnonlin(7);

H = H + hessc8(X) * lambda.ineqnonlin(8);

H = H + hessc9(X) * lambda.ineqnonlin(9);

H = H + hessc10(X) * lambda.ineqnonlin(10);

Run the Optimization
Start the optimization with the electrons distributed randomly on a sphere of
radius 1/2 centered at [0,0,–1]:

rng('default'); % for reproducibility
Xinitial = randn(3,10); % columns are normal 3-D vectors
for j=1:10

Xinitial(:,j) = Xinitial(:,j)/norm(Xinitial(:,j))/2;
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% this normalizes to a 1/2-sphere
end
Xinitial(3,:) = Xinitial(3,:) - 1; % center at [0,0,-1]
Xinitial = Xinitial(:); % Convert to a column vector

Set the options to use the interior-point algorithm, and to use gradients and
the Hessian:

options =
optimoptions(@fmincon,'Algorithm','interior-point','GradObj','on',...

'GradConstr','on','Hessian','user-supplied',...
'HessFcn',@hessfinal,'Display','final');

Call fmincon:

[xfinal fval exitflag output] = fmincon(@demoenergy,Xinitial,...
A,b,[],[],[],[],@democonstr,options)

The output is as follows:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

xfinal =

-0.0317

0.0317

-1.9990

0.6356

-0.6356

-1.4381

0.0000

-0.0000

-0.0000

0.0000

-1.0000

-1.0000

1.0000

-0.0000

6-95



6 Optimization Algorithms and Examples

-1.0000

-1.0000

-0.0000

-1.0000

0.6689

0.6644

-1.3333

-0.6667

0.6667

-1.3333

0.0000

1.0000

-1.0000

-0.6644

-0.6689

-1.3333

fval =

34.1365

exitflag =

1

output =

iterations: 19

funcCount: 28

constrviolation: 0

stepsize: 4.0372e-005

algorithm: 'interior-point'

firstorderopt: 4.0015e-007

cgiterations: 55

message: 'Local minimum found that satisfies the constraints.

Optimization complet...'

Even though the initial positions of the electrons were random, the final
positions are nearly symmetric:
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Compare to Optimization Without Gradients and
Hessians
The use of gradients and Hessians makes the optimization run faster and
more accurately. To compare with the same optimization using no gradient or
Hessian information, set the options not to use gradients and Hessians:

options = optimoptions(@fmincon,'Algorithm','interior-point',...
'Display','final');

[xfinal2 fval2 exitflag2 output2] = fmincon(@demoenergy,Xinitial,...
A,b,[],[],[],[],@democonstr,options)
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The output shows that fmincon found an equivalent minimum, but took more
iterations and many more function evaluations to do so:

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in

feasible directions, to within the default value of the function tolerance,

and constraints are satisfied to within the default value of the constraint tolerance.

xfinal2 =

0.0000

1.0000

-1.0000

0.6689

-0.6644

-1.3334

-0.6644

0.6689

-1.3334

0.0000

-1.0000

-1.0000

0.6357

0.6357

-1.4380

-0.0317

-0.0317

-1.9990

1.0000

0.0000

-1.0000

-1.0000

0.0000

-1.0000

0.0000

0.0000

-0.0000

-0.6667

-0.6667

-1.3334
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fval2 =

34.1365

exitflag2 =

1

output2 =

iterations: 78

funcCount: 2463

constrviolation: 0

stepsize: 3.5711e-07

algorithm: 'interior-point'

firstorderopt: 2.7591e-06

cgiterations: 0

message: 'Local minimum found that satisfies the constraints.

Optimization complet...'

In this run the number of function evaluations (in output2.funcCount) is
2432, compared to 28 (in output.funcCount) when using gradients and
Hessian.

Clear the Symbolic Variable Assumptions
The symbolic variables in this example have the assumption, in the symbolic
engine workspace, that they are real. To clear this assumption from the
symbolic engine workspace, it is not sufficient to delete the variables. You
must clear the variables using the syntax

syms x11 x12 x13 clear

or reset the symbolic engine using the command

reset(symengine)

After resetting the symbolic engine you should clear all symbolic variables
from the MATLAB workspace with the clear command, or clear
variable_list.
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One-Dimensional Semi-Infinite Constraints
Find values of x that minimize

f(x) = (x1 – 0.5)
2 + (x2– 0.5)

2 + (x3– 0.5)
2

where

K x w w x w x w w x x

K

1 1 1 1 1 2 1
2

1 3 3
1

1000
50 1, sin cos sin ,( ) = ( ) ( ) − −( ) − ( ) − ≤

22 2 2 2 2 1 2
2

2 3 3
1

1000
50 1x w w x w x w w x x, sin cos sin ,( ) = ( ) ( ) − −( ) − ( ) − ≤

for all values of w1 and w2 over the ranges

1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100.

Note that the semi-infinite constraints are one-dimensional, that is, vectors.
Because the constraints must be in the form Ki(x,wi) ≤ 0, you need to compute
the constraints as

K x w w x w x w w x x1 1 1 1 1 2 1
2

1 3 3
1

1000
50 1 0, sin cos sin( ) = ( ) ( ) − −( ) − ( ) − − ≤ ,,

, sin cos sinK x w w x w x w w x x2 2 2 2 2 1 2
2

2 3 3
1

1000
50 1( ) = ( ) ( ) − −( ) − ( ) − − ≤≤ 0.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.5).^2);

Second, write a file mycon.m that computes the nonlinear equality and
inequality constraints and the semi-infinite constraints.

function [c,ceq,K1,K2,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),
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s = [0.2 0; 0.2 0];
end
% Sample set
w1 = 1:s(1,1):100;
w2 = 1:s(2,1):100;

% Semi-infinite constraints
K1 = sin(w1*X(1)).*cos(w1*X(2)) - 1/1000*(w1-50).^2 -...

sin(w1*X(3))-X(3)-1;
K2 = sin(w2*X(2)).*cos(w2*X(1)) - 1/1000*(w2-50).^2 -...

sin(w2*X(3))-X(3)-1;

% No finite nonlinear constraints
c = []; ceq=[];

% Plot a graph of semi-infinite constraints
plot(w1,K1,'-',w2,K2,':')
title('Semi-infinite constraints')
drawnow

Then, invoke an optimization routine.

x0 = [0.5; 0.2; 0.3]; % Starting guess
[x,fval] = fseminf(@myfun,x0,2,@mycon);

After eight iterations, the solution is

x
x =

0.6675
0.3012
0.4022

The function value and the maximum values of the semi-infinite constraints
at the solution x are

fval
fval =

0.0771

[c,ceq,K1,K2] = mycon(x,NaN); % Initial sampling interval
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max(K1)
ans =

-0.0077
max(K2)
ans =

-0.0812

A plot of the semi-infinite constraints is produced.

0 20 40 60 80 100
−6

−5

−4

−3

−2

−1

0
Semi−infinite constraints

This plot shows how peaks in both constraints are on the constraint boundary.

The plot command inside mycon.m slows down the computation. Remove
this line to improve the speed.
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Two-Dimensional Semi-Infinite Constraint
Find values of x that minimize

f(x) = (x1 – 0.2)
2 + (x2– 0.2)

2 + (x3– 0.2)
2,

where

K x w w x w x w w x x1 1 1 2 2 1
2

1 3 3
1

1000
50, sin cos sin ...( ) = ( ) ( ) − −( ) − ( ) − +

                  sin cos sinw x w x w w x2 2 1 1 2
2

2 3
1

1000
50( ) ( ) − −( ) − ( )) − ≤x3 1 5. ,

for all values of w1 and w2 over the ranges

1 ≤ w1 ≤ 100,
1 ≤ w2 ≤ 100,

starting at the point x = [0.25,0.25,0.25].

Note that the semi-infinite constraint is two-dimensional, that is, a matrix.

First, write a file that computes the objective function.

function f = myfun(x,s)
% Objective function
f = sum((x-0.2).^2);

Second, write a file for the constraints, called mycon.m. Include code to draw
the surface plot of the semi-infinite constraint each time mycon is called. This
enables you to see how the constraint changes as X is being minimized.

function [c,ceq,K1,s] = mycon(X,s)
% Initial sampling interval
if isnan(s(1,1)),

s = [2 2];
end

% Sampling set
w1x = 1:s(1,1):100;
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w1y = 1:s(1,2):100;
[wx,wy] = meshgrid(w1x,w1y);

% Semi-infinite constraint
K1 = sin(wx*X(1)).*cos(wx*X(2))-1/1000*(wx-50).^2 -...

sin(wx*X(3))-X(3)+sin(wy*X(2)).*cos(wx*X(1))-...
1/1000*(wy-50).^2-sin(wy*X(3))-X(3)-1.5;

% No finite nonlinear constraints
c = []; ceq=[];

% Mesh plot
m = surf(wx,wy,K1,'edgecolor','none','facecolor','interp');
camlight headlight
title('Semi-infinite constraint')
drawnow

Next, invoke an optimization routine.

x0 = [0.25, 0.25, 0.25]; % Starting guess
[x,fval] = fseminf(@myfun,x0,1,@mycon)

After nine iterations, the solution is

x
x =

0.2522 0.1714 0.1936

and the function value at the solution is

fval
fval =

0.0036

The goal was to minimize the objective f(x) such that the semi-infinite
constraint satisfied K1(x,w) ≤ 1.5. Evaluating mycon at the solution x and
looking at the maximum element of the matrix K1 shows the constraint is
easily satisfied.

[c,ceq,K1] = mycon(x,[0.5,0.5]); % Sampling interval 0.5
max(max(K1))
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ans =
-0.0333

This call to mycon produces the following surf plot, which shows the
semi-infinite constraint at x.
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Linear Programming Algorithms

In this section...

“Linear Programming Definition” on page 6-106

“Interior-Point Linear Programming” on page 6-106

“Active-Set linprog Algorithm” on page 6-110

“linprog Simplex Algorithm” on page 6-114

Linear Programming Definition
Linear programming is the problem of finding a vector x that minimizes a
linear function fTx subject to linear constraints:

min
x

Tf x

such that one or more of the following hold: A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.

Interior-Point Linear Programming

Introduction
The default interior-point method is based on LIPSOL ([52]), which is a
variant of Mehrotra’s predictor-corrector algorithm ([47]), a primal-dual
interior-point method.

Main Algorithm
The algorithm begins by applying a series of preprocessing steps (see
“Preprocessing” on page 6-109). After preprocessing, the problem has the form

min
.x

Tf x
A x b

x u
 such that 

⋅ =
≤ ≤

⎧
⎨
⎩0 (6-63)

The upper bounds constraints are implicitly included in the constraint matrix
A. With the addition of primal slack variables s, Equation 6-63 becomes
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min
, .

x

Tf x
A x b
x s u

x s
 such that 

 

⋅ =
+ =
≥ ≥

⎧
⎨
⎪

⎩⎪ 0 0 (6-64)

which is referred to as the primal problem: x consists of the primal variables
and s consists of the primal slack variables. The dual problem is

max
, ,

b y u w A y w z f
z w

T T
T

− ⋅ − + =
≥ ≥

⎧
⎨
⎪

⎩⎪
  such that  

 0 0 (6-65)

where y and w consist of the dual variables and z consists of the dual slacks.
The optimality conditions for this linear program, i.e., the primal Equation
6-64 and the dual Equation 6-65, are

F x y z s w

A x b
x s u

A y w z f
x z
s w

T

i i

i i

( , , , , ) =

⋅ −
+ −

⋅ − + −

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

= 00

0 0 0 0

,

, , , ,                    x z s w≥ ≥ ≥ ≥ (6-66)

where xizi and siwi denote component-wise multiplication.

The quadratic equations xizi = 0 and siwi = 0 are called the complementarity
conditions for the linear program; the other (linear) equations are called the
feasibility conditions. The quantity

xTz + sTw

is the duality gap, which measures the residual of the complementarity
portion of F when (x,z,s,w) ≥ 0.

The algorithm is a primal-dual algorithm, meaning that both the primal
and the dual programs are solved simultaneously. It can be considered a
Newton-like method, applied to the linear-quadratic system F(x,y,z,s,w) = 0
in Equation 6-66, while at the same time keeping the iterates x, z, w, and s
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positive, thus the name interior-point method. (The iterates are in the strictly
interior region represented by the inequality constraints in Equation 6-64.)

The algorithm is a variant of the predictor-corrector algorithm proposed by
Mehrotra. Consider an iterate v = [x;y;z;s;w], where [x;z;s;w] > 0 First compute
the so-called prediction direction

Δv F v F vp
T= −( )−( ) ( ),

1

which is the Newton direction; then the so-called corrector direction

Δ Δv F v F v v ec
T

p= −( ) +( ) −−
( ) ,

1


where μ > 0 is called the centering parameter and must be chosen carefully.

ê is a zero-one vector with the ones corresponding to the quadratic equations
in F(v), i.e., the perturbations are only applied to the complementarity
conditions, which are all quadratic, but not to the feasibility conditions, which
are all linear. The two directions are combined with a step length parameter
α > 0 and update v to obtain the new iterate v+:

v v v vp c
+ = + +( ) Δ Δ ,

where the step length parameter α is chosen so that

v+ = [x+;y+;z+;s+;w+]

satisfies

[x+;z+;s+;w+] > 0.

In solving for the preceding predictor/corrector directions, the algorithm
computes a (sparse) direct factorization on a modification of the Cholesky
factors of A·AT. If A has dense columns, it instead uses the Sherman-Morrison
formula. If that solution is not adequate (the residual is too large), it performs
an LDL factorization of an augmented system form of the step equations to
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find a solution. (See Example 4 — The Structure of D in the MATLAB ldl
function reference page.)

The algorithm then loops until the iterates converge. The main stopping
criteria is a standard one:

r

b

r

f

r

u

f x b y u w

f x b y u

b f u
T T T

T Tmax , max , max , max , ,1 1 1 1( ) + ( ) + ( ) +
− +

− TTw
tol( ) ≤ ,

where

r Ax b

r A y w z f

r x s u

b

f
T

u

= −

= − + −

= + −

are the primal residual, dual residual, and upper-bound feasibility
respectively, and

f x b y u wT T T− +

is the difference between the primal and dual objective values, and tol is some
tolerance. The sum in the stopping criteria measures the total relative errors
in the optimality conditions in Equation 6-66.

Preprocessing
A number of preprocessing steps occur before the actual iterative algorithm
begins. The resulting transformed problem is one where

• All variables are bounded below by zero.

• All constraints are equalities.

• Fixed variables, those with equal upper and lower bounds, are removed.

• Rows of all zeros in the constraint matrix are removed.

• The constraint matrix has full structural rank.
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• Columns of all zeros in the constraint matrix are removed.

• When a significant number of singleton rows exist in the constraint matrix,
the associated variables are solved for and the rows removed.

While these preprocessing steps can do much to speed up the iterative part
of the algorithm, if the Lagrange multipliers are required, the preprocessing
steps must be undone since the multipliers calculated during the algorithm
are for the transformed problem, and not the original. Thus, if the multipliers
are not requested, this transformation back is not computed, and might save
some time computationally.

Active-Set linprog Algorithm
The medium-scale active-set linear programming algorithm is a variant of the
sequential quadratic programming algorithm used by fmincon (“Sequential
Quadratic Programming (SQP)” on page 6-33). The difference is that the
quadratic term is set to zero.

At each major iteration of the SQP method, a QP problem of the following
form is solved, where Ai refers to the ith row of the m-by-n matrix A.

min ( ) ,

, ,...,
, ,..., .

d

T

i i e

i i e

n
q d c d

A d b i m

A d b i m m

∈ℜ
=

= =
≤ = +

  
  

1
1

The method used in Optimization Toolbox functions is an active set strategy
(also known as a projection method) similar to that of Gill et al., described in
[18] and [17]. It has been modified for both Linear Programming (LP) and
Quadratic Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the
calculation of a feasible point (if one exists). The second phase involves the
generation of an iterative sequence of feasible points that converge to the

solution. In this method an active set, Ak , is maintained that is an estimate
of the active constraints (i.e., those that are on the constraint boundaries) at
the solution point. Virtually all QP algorithms are active set methods. This
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point is emphasized because there exist many different methods that are very
similar in structure but that are described in widely different terms.

Ak is updated at each iteration k, and this is used to form a basis for a search

direction d̂k . Equality constraints always remain in the active set Ak . The

notation for the variable d̂k is used here to distinguish it from dk in the major

iterations of the SQP method. The search direction d̂k is calculated and
minimizes the objective function while remaining on any active constraint

boundaries. The feasible subspace for d̂k is formed from a basis Zk whose

columns are orthogonal to the estimate of the active set Ak (i.e., A Zk k = 0 ).
Thus a search direction, which is formed from a linear summation of any
combination of the columns of Zk, is guaranteed to remain on the boundaries
of the active constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition

of the matrix Ak
T , where l is the number of active constraints and l < m.

That is, Zk is given by

Z Q l mk = +[ ]:, : ,1 (6-67)

where

Q A
RT

k
T =

⎡

⎣
⎢
⎤

⎦
⎥0
.

Once Zk is found, a new search direction d̂k is sought that minimizes q(d)

where d̂k is in the null space of the active constraints. That is, d̂k is a linear

combination of the columns of Zk: d̂ Z pk k= for some vector p.

Then if you view the quadratic as a function of p, by substituting for d̂k ,
you have

6-111



6 Optimization Algorithms and Examples

q p p Z HZ p c Z pT
k
T

k
T

k( ) .= +1
2 (6-68)

Differentiating this with respect to p yields

∇q p Z HZ p Z ck
T

k k
T( ) .= + (6-69)

∇q(p) is referred to as the projected gradient of the quadratic function because

it is the gradient projected in the subspace defined by Zk. The term Z HZk
T

k
is called the projected Hessian. Assuming the Hessian matrix H is positive
definite (which is the case in this implementation of SQP), then the minimum
of the function q(p) in the subspace defined by Zk occurs when ∇q(p) = 0,
which is the solution of the system of linear equations

Z HZ p Z ck
T

k k
T= − . (6-70)

A step is then taken of the form

x x d d Z pk k k k k
T

+ = + =1  ˆ , ˆ .  where (6-71)

At each iteration, because of the quadratic nature of the objective function,

there are only two choices of step length α. A step of unity along d̂k is the

exact step to the minimum of the function restricted to the null space of Ak .
If such a step can be taken, without violation of the constraints, then this

is the solution to QP (Equation 6-68). Otherwise, the step along d̂k to the
nearest constraint is less than unity and a new constraint is included in the
active set at the next iteration. The distance to the constraint boundaries in

any direction d̂k is given by

 =
− −( )⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪∈{ }
min ,

,...,i m

i k i

i k

A x b

A d1 (6-72)

which is defined for constraints not in the active set, and where the direction

d̂k is towards the constraint boundary, i.e., A d i mi k
ˆ , ,...,> =0 1 .
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When n independent constraints are included in the active set, without
location of the minimum, Lagrange multipliers, λk, are calculated that satisfy
the nonsingular set of linear equations

A ck
T

k = . (6-73)

If all elements of λk are positive, xk is the optimal solution of QP (Equation
6-68). However, if any component of λk is negative, and the component does
not correspond to an equality constraint, then the corresponding element is
deleted from the active set and a new iterate is sought.

Initialization
The algorithm requires a feasible point to start. If the current point from the
SQP method is not feasible, then you can find a point by solving the linear
programming problem

min

, ,...,
,

,




∈ℜ ∈ℜ

= =
− ≤

 
  such that

      
  

x

i i e

i i

n

A x b i m

A x b

1
ii m me= +1,..., . (6-74)

The notation Ai indicates the ith row of the matrix A. You can find a feasible
point (if one exists) to Equation 6-74 by setting x to a value that satisfies
the equality constraints. You can determine this value by solving an under-
or overdetermined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, then the slack variable γ is
set to the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the
search direction to the steepest descent direction at each iteration, where gk is
the gradient of the objective function (equal to the coefficients of the linear
objective function).

ˆ .d Z Z gk k k
T

k= − (6-75)

If a feasible point is found using the preceding LP method, the main QP phase

is entered. The search direction d̂k is initialized with a search direction d̂1
found from solving the set of linear equations
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Hd gk
ˆ ,1 = − (6-76)

where gk is the gradient of the objective function at the current iterate xk
(i.e., Hxk + c).

If a feasible solution is not found for the QP problem, the direction of search

for the main SQP routine d̂k is taken as one that minimizes γ.

linprog Simplex Algorithm
The simplex algorithm, invented by George Dantzig in 1947, is one of the
earliest and best known optimization algorithms. The algorithm solves the
linear programming problem

min
,

,
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The algorithm moves along the edges of the polyhedron defined by the
constraints, from one vertex to another, while decreasing the value of the
objective function, fTx, at each step. This section describes an improved
version of the original simplex algorithm that returns a vertex optimal
solution.

This section covers the following topics:

• “Main Algorithm” on page 6-114

• “Preprocessing” on page 6-116

• “Using the Simplex Algorithm” on page 6-117

• “Basic and Nonbasic Variables” on page 6-117

Main Algorithm
The simplex algorithm has two phases:

• Phase 1 — Compute an initial basic feasible point.
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• Phase 2 — Compute the optimal solution to the original problem.

Note You cannot supply an initial point x0 for linprog with the simplex
algorithm. If you pass in x0 as an input argument, linprog ignores x0 and
computes its own initial point for the algorithm.

Phase 1. In phase 1, the algorithm finds an initial basic feasible solution
(see “Basic and Nonbasic Variables” on page 6-117 for a definition) by solving
an auxiliary piecewise linear programming problem. The objective function of

the auxiliary problem is the linear penalty function P P xj j
j

= ( )∑ ,

where Pj(xj) is defined by
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P(x) measures how much a point x violates the lower and upper bound
conditions. The auxiliary problem is

min
.x

j
j

P
A x b

Aeq x beq∑ ⋅ ≤
⋅ =

⎧
⎨
⎩

  subject to 

The original problem has a feasible basis point if and only if the auxiliary
problem has minimum value 0.

The algorithm finds an initial point for the auxiliary problem by a heuristic
method that adds slack and artificial variables as necessary. The algorithm
then uses this initial point together with the simplex algorithm to solve the
auxiliary problem. The solution is the initial point for phase 2 of the main
algorithm.
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Phase 2. In phase 2, the algorithm applies the simplex algorithm, starting at
the initial point from phase 1, to solve the original problem. At each iteration,
the algorithm tests the optimality condition and stops if the current solution
is optimal. If the current solution is not optimal, the algorithm

1 Chooses one variable, called the entering variable, from the nonbasic
variables and adds the corresponding column of the nonbasis to the basis
(see “Basic and Nonbasic Variables” on page 6-117 for definitions).

2 Chooses a variable, called the leaving variable, from the basic variables and
removes the corresponding column from the basis.

3 Updates the current solution and the current objective value.

The algorithm chooses the entering and the leaving variables by solving two
linear systems while maintaining the feasibility of the solution.

The algorithm detects when there is no progress in the Phase 2 solution
process. It attempts to continue by performing bound perturbation. For an
explanation of this part of the algorithm, see Applegate, Bixby, Chvatal, and
Cook [59].

Preprocessing
The simplex algorithm uses the same preprocessing steps as the interior-point
linear programming solver, which are described in “Preprocessing” on page
6-109. In addition, the algorithm uses two other steps:

1 Eliminates columns that have only one nonzero element and eliminates
their corresponding rows.

2 For each constraint equation a·x = b, where a is a row of Aeq, the algorithm
computes the lower and upper bounds of the linear combination a·x as rlb
and rub if the lower and upper bounds are finite. If either rlb or rub equals
b, the constraint is called a forcing constraint. The algorithm sets each
variable corresponding to a nonzero coefficient of a·x equal to its upper or
lower bound, depending on the forcing constraint. The algorithm then
deletes the columns corresponding to these variables and deletes the rows
corresponding to the forcing constraints.
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Using the Simplex Algorithm
To use the simplex method, set the Algorithm option to 'simplex' using
optimoptions.

options = optimoptions(@linprog,'Algorithm','simplex');

Then call linprog with the options input argument. See the reference page
for linprog for more information.

linprog returns empty output arguments for x and fval if it detects
infeasibility or unboundedness in the preprocessing procedure. linprog
returns the current point when it

• Exceeds the maximum number of iterations

• Detects that the problem is infeasible or unbounded in phases 1 or 2

When the problem is unbounded, linprog returns x and fval in the
unbounded direction.

Basic and Nonbasic Variables
This section defines the terms basis, nonbasis, and basic feasible solutions for
a linear programming problem. The definition assumes that the problem is
given in the following standard form:

min
,

.x

Tf x
A x b

lb x ub
 such that 

⋅ =
≤ ≤

⎧
⎨
⎩

(Note that A and b are not the matrix and vector defining the inequalities in
the original problem.) Assume that A is an m-by-n matrix, of rank m < n,

whose columns are {a1, a2, ..., an}. Suppose that a a ai i im1 2
, ,...,{ } is a basis

for the column space of A, with index set B = {i1, i2, ..., im}, and that N =
{1, 2, ..., n}\B is the complement of B. The submatrix AB is called a basis and
the complementary submatrix AN is called a nonbasis. The vector of basic
variables is xB and the vector of nonbasic variables is xN. At each iteration in
phase 2, the algorithm replaces one column of the current basis with a column
of the nonbasis and updates the variables xB and xN accordingly.
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If x is a solution to A·x = b and all the nonbasic variables in xN are equal to
either their lower or upper bounds, x is called a basic solution. If, in addition,
the basic variables in xB satisfy their lower and upper bounds, so that x is a
feasible point, x is called a basic feasible solution.
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Typical Linear Programming Problem
This example shows the solution of a typical linear programming problem.
The problem is

min
,

,
.
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You can load the matrices and vectors A, Aeq, b, beq, f, and the lower bounds
lb into the MATLAB workspace with

load sc50b

This problem in sc50b.mat has 48 variables, 30 inequalities, and 20 equalities.

Use linprog to solve the problem:

options = optimoptions(@linprog,'Display','iter');
[x,fval,exitflag,output] = ...

linprog(f,A,b,Aeq,beq,lb,[],[],options);

Because the iterative display was set using optimoptions, the results
displayed are

Residuals: Primal Dual Duality Total
Infeas Infeas Gap Rel
A*x-b A'*y+z-f x'*z Error

---------------------------------------------------
Iter 0: 1.50e+03 2.19e+01 1.91e+04 1.00e+02
Iter 1: 1.15e+02 3.16e-15 3.62e+03 9.90e-01
Iter 2: 9.79e-13 2.62e-15 4.32e+02 9.48e-01
Iter 3: 3.49e-12 5.93e-15 7.78e+01 6.88e-01
Iter 4: 4.86e-11 8.35e-16 2.38e+01 2.69e-01
Iter 5: 2.18e-10 3.39e-16 5.05e+00 6.89e-02
Iter 6: 1.05e-10 9.55e-17 1.64e-01 2.34e-03
Iter 7: 9.43e-12 1.51e-16 1.09e-05 1.55e-07
Iter 8: 1.11e-12 1.68e-16 1.09e-11 1.52e-13

Optimization terminated.
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For this problem, the interior-point linear programming algorithm quickly
reduces the scaled residuals below the default tolerance of 1e-08.

The exitflag value is positive, telling you linprog converged. You can
also get the final function value in fval and the number of iterations in
output.iterations:

exitflag,fval,output

exitflag =
1

fval =
-70.0000

output =
iterations: 8
algorithm: 'interior-point'

cgiterations: 0
message: 'Optimization terminated.'

constrviolation: 4.8317e-13
firstorderopt: 2.7908e-13
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Quadratic Programming Algorithms

In this section...

“Quadratic Programming Definition” on page 6-121

“interior-point-convex quadprog Algorithm” on page 6-121

“trust-region-reflective quadprog Algorithm” on page 6-126

“active-set quadprog Algorithm” on page 6-131

Quadratic Programming Definition
Quadratic programming is the problem of finding a vector x that minimizes a
quadratic function, possibly subject to linear constraints:

min
x

T Tx Hx c x
1
2

+

such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.

interior-point-convex quadprog Algorithm
The interior-point-convex algorithm performs the following steps:

1 “Presolve/Postsolve” on page 6-121

2 “Generate Initial Point” on page 6-122

3 “Predictor-Corrector” on page 6-123

4 “Multiple Corrections” on page 6-125

5 “Total Relative Error” on page 6-125

Presolve/Postsolve
The algorithm begins by attempting to simplify the problem by removing
redundancies and simplifying constraints. In particular, the presolve portion
performs the following tasks, among others:
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• Check if any variables have equal upper and lower bounds. If so, check for
feasibility, then fix and remove the variables.

• Check if any linear inequality constraints involve just one variable. If so,
check for feasibility, and change the linear constraint to a bound.

• Check if any linear equality constraints involve just one variable. If so,
check for feasibility, then fix and remove the variable.

• Check if any linear constraint matrix has zero rows. If so, check for
feasibility, and delete the rows.

• Check if the bounds and linear constraints are consistent.

• Check if any variables appear only as linear terms in the objective function
and do not appear in any linear constraint. If so, check for feasibility and
boundedness, and fix the variables at their appropriate bounds.

In the presolve step the algorithm might detect an infeasible or unbounded
problem. If so, the algorithm halts and issues an appropriate exit message.

If the algorithm does not detect an infeasible or unbounded problem in the
presolve step, it continues with the other steps. At the end, it reconstructs
the original problem, undoing any presolve transformations. This final step
is the postsolve step.

For details, see Gould and Toint [63].

Generate Initial Point
The initial point x0 for the algorithm is:

1 Initialize x0 to ones(n,1), where n is the number of rows in H.

2 For components that have both an upper bound ub and a lower bound lb,
if a component of x0 is not strictly inside the bounds, the component is
set to (ub + lb)/2.

3 For components that have only one bound, modify the component if
necessary to lie strictly inside the bound.
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Predictor-Corrector
Similar to the fmincon interior-point algorithm, the interior-point-convex
algorithm tries to find a point where the Karush-Kuhn-Tucker (KKT)
conditions hold. For the quadratic programming problem described in
“Quadratic Programming Definition” on page 6-121, these conditions are:

Hx c A y A z

Ax b s
A x b

s z i m

s
z

eq
T T

eq eq

i i

+ − − =

− − =
− =

= =
≥
≥

0

0
0

0 1 2

0

, , ,..., 

00.

Here

• A is the extended linear inequality matrix that includes bounds written

as linear inequalities. b is the corresponding linear inequality vector,
including bounds.

• s is the vector of slacks that convert inequality constraints to equalities. s
has length m, the number of linear inequalities and bounds.

• z is the vector of Lagrange multipliers corresponding to s.

• y is the vector of Lagrange multipliers associated with the equality
constraints.

The algorithm first predicts a step from the Newton-Raphson formula, then
computes a corrector step. The corrector attempts to better enforce the
nonlinear constraint sizi = 0.

Definitions for the predictor step:

• rd, the dual residual:

r Hx c A y A zd eq
T T    .

• req, the primal equality constraint residual:
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r A x beq eq eq= − .

• rineq, the primal inequality constraint residual, which includes bounds
and slacks:

r Ax b sineq = − − .

• rsz, the complementarity residual:

rsz = Sz.

S is the diagonal matrix of slack terms, z is the column matrix of Lagrange
multipliers.

• rc, the average complementarity:

r
s z
mc

T
 .

In a Newton step, the changes in x, s, y, and z, are given by:
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However, a full Newton step might be infeasible, because of the positivity
constraints on s and z. Therefore, quadprog shortens the step, if necessary,
to maintain positivity.

Additionally, to maintain a “centered” position in the interior, instead of trying
to solve sizi = 0, the algorithm takes a positive parameter σ, and tries to solve

sizi = σrc.

quadprog replaces rsz in the Newton step equation with rsz + ΔsΔz – σrc1,
where 1 is the vector of ones. Also, quadprog reorders the Newton equations
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to obtain a symmetric, more numerically stable system for the predictor step
calculation.

For details, see Mehrotra [47].

Multiple Corrections
After calculating the corrected Newton step, quadprog can perform more
calculations to get both a longer current step, and to prepare for better
subsequent steps. These multiple correction calculations can improve both
performance and robustness. For details, see Gondzio [62].

Total Relative Error
quadprog calculates a merit function φ at every iteration. The merit function
is a measure of feasibility, and is also called total relative error. quadprog
stops if the merit function grows too large. In this case, quadprog declares
the problem to be infeasible.

The merit function is related to the KKT conditions for the problem—see
“Predictor-Corrector” on page 6-123. Use the following definitions:

   
 

  

  

max , , , , , ,1 H A A c b b

r A x b

r Ax b s

r Hx c A

eq eq

eq eq eq

ineq

d eqq eq ineq

ineq eq eq

T T

T T T T

A

g x Hx f x b b

 

 



    .

The notation A and b means the linear inequality coefficients, augmented

with terms to represent bounds. The notation ineq similarly represents
Lagrange multipliers for the linear inequality constraints, including bound
constraints. This was called z in “Predictor-Corrector” on page 6-123, and

eq was called y.

The merit function φ is
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1


max , , .r r r geq ineq d     
quadprog iterative display includes a column showing the merit function
under the heading Total relative error.

trust-region-reflective quadprog Algorithm
Many of the methods used in Optimization Toolbox solvers are based on trust
regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,

min ( ), .
s

q s s N ∈{ }
(6-77)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated
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min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-78)

where g is the gradient of f at the current point x, H is the Hessian matrix
(the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ
is a positive scalar, and . is the 2-norm. Good algorithms exist for solving
Equation 6-78 (see [48]); such algorithms typically involve the computation of
a full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.

Such algorithms provide an accurate solution to Equation 6-78. However,
they require time proportional to several factorizations of H. Therefore, for
large-scale problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-78, have been proposed in
the literature ([42] and [50]). The approximation approach followed in
Optimization Toolbox solvers is to restrict the trust-region subproblem
to a two-dimensional subspace S ([39] and [42]). Once the subspace S
has been computed, the work to solve Equation 6-78 is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to
the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver defines
S as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-79)

or a direction of negative curvature,

s H sT
2 2 0⋅ ⋅ < . (6-80)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).
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A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-78 to determine the trial step s.

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
trial step is not accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion
of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.

The subspace trust-region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step,
as in the nonlinear minimization case, a piecewise reflective line search is
conducted at each iteration. See [45] for details of the line search.

Preconditioned Conjugate Gradient Method
A popular way to solve large symmetric positive definite systems of linear
equations Hp = –g is the method of Preconditioned Conjugate Gradients
(PCG). This iterative approach requires the ability to calculate matrix-vector
products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where
C–1HC–1 is a well-conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is
symmetric. However, H is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of
negative (or zero) curvature is encountered, i.e., dTHd ≤ 0. The PCG output
direction, p, is either a direction of negative curvature or an approximate
(tol controls how approximate) solution to the Newton system Hp = –g. In
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either case p is used to help define the two-dimensional subspace used in
the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-5.

Linear Equality Constraints
Linear constraints complicate the situation described for unconstrained
minimization. However, the underlying ideas described previously can be
carried through in a clean and efficient way. The trust-region methods in
Optimization Toolbox solvers generate strictly feasible iterates.

The general linear equality constrained minimization problem can be written

min ( ) ,f x Ax b  such that  ={ } (6-81)

where A is an m-by-n matrix (m ≤ n). Some Optimization Toolbox solvers
preprocess A to remove strict linear dependencies using a technique based on
the LU factorization of AT [46]. Here A is assumed to be of rank m.

The method used to solve Equation 6-81 differs from the unconstrained
approach in two significant ways. First, an initial feasible point x0 is
computed, using a sparse least-squares step, so that Ax0 = b. Second,
Algorithm PCG is replaced with Reduced Preconditioned Conjugate Gradients
(RPCG), see [46], in order to compute an approximate reduced Newton step
(or a direction of negative curvature in the null space of A). The key linear
algebra step involves solving systems of the form

C A

A

s
t

rT

 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎤

⎦
⎥ =
⎡

⎣
⎢
⎤

⎦
⎥ ,

(6-82)

where A approximates A (small nonzeros of A are set to zero provided rank is
not lost) and C is a sparse symmetric positive-definite approximation to H,
i.e., C = H. See [46] for more details.

Box Constraints
The box constrained problem is of the form
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min ( ) ,f x l x u  such that  ≤ ≤{ } (6-83)

where l is a vector of lower bounds, and u is a vector of upper bounds. Some
(or all) of the components of l can be equal to –∞ and some (or all) of the
components of u can be equal to ∞. The method generates a sequence of
strictly feasible points. Two techniques are used to maintain feasibility while
achieving robust convergence behavior. First, a scaled modified Newton
step replaces the unconstrained Newton step (to define the two-dimensional
subspace S). Second, reflections are used to increase the step size.

The scaled modified Newton step arises from examining the Kuhn-Tucker
necessary conditions for Equation 6-83,

D x g( ) ,( ) =−2 0 (6-84)

where

D x vk( ) ,/= ( )−diag 1 2

and the vector v(x) is defined below, for each 1 ≤ i ≤ n:

• If gi < 0 and ui < ∞ then vi = xi – ui

• If gi ≥ 0 and li > –∞ then vi = xi – li

• If gi < 0 and ui = ∞ then vi = –1

• If gi ≥ 0 and li = –∞ then vi = 1

The nonlinear system Equation 6-84 is not differentiable everywhere.
Nondifferentiability occurs when vi = 0. You can avoid such points by
maintaining strict feasibility, i.e., restricting l < x < u.

The scaled modified Newton step sk for the nonlinear system of equations
given by Equation 6-84 is defined as the solution to the linear system

ˆ ˆMDs gN = − (6-85)

at the kth iteration, where
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ˆ ,/g D g v g= = ( )−1 1 2diag
(6-86)

and

ˆ ( ) .M D HD g Jv= +− −1 1 diag (6-87)

Here Jv plays the role of the Jacobian of |v|. Each diagonal component of the
diagonal matrix Jv equals 0, –1, or 1. If all the components of l and u are
finite, Jv = diag(sign(g)). At a point where gi = 0, vimight not be differentiable.

Jii
v = 0 is defined at such a point. Nondifferentiability of this type is not a

cause for concern because, for such a component, it is not significant which
value vi takes. Further, |vi| will still be discontinuous at this point, but the
function |vi|·gi is continuous.

Second, reflections are used to increase the step size. A (single) reflection
step is defined as follows. Given a step p that intersects a bound constraint,
consider the first bound constraint crossed by p; assume it is the ith bound
constraint (either the ith upper or ith lower bound). Then the reflection step
pR = p except in the ith component, where pRi = –pi.

active-set quadprog Algorithm
Recall the problem quadprog addresses:

min
x

T Tx Hx c x
1
2

+
(6-88)

such that A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u. m is the total number of linear
constraints, the sum of number of rows of A and of Aeq.

The medium-scale quadprog algorithm is an active-set strategy (also known
as a projection method) similar to that of Gill et al., described in [18] and
[17]. It has been modified for both Linear Programming (LP) and Quadratic
Programming (QP) problems.

The solution procedure involves two phases. The first phase involves the
calculation of a feasible point (if one exists). The second phase involves the
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generation of an iterative sequence of feasible points that converge to the
solution.

Active Set Iterations
In this method an active set matrix, Sk, is maintained that is an estimate of
the active constraints (i.e., those that are on the constraint boundaries) at the
solution point. Specifically, the active set Sk consists of the rows of Aeq, and a
subset of the rows of A. Sk is updated at each iteration k, and is used to form
a basis for a search direction dk. Equality constraints always remain in the
active set Sk. The search direction dk is calculated and minimizes the objective
function while remaining on active constraint boundaries. The feasible
subspace for dk is formed from a basis Zk whose columns are orthogonal to the
estimate of the active set Sk (i.e., SkZk = 0). Thus a search direction, which is
formed from a linear summation of any combination of the columns of Zk, is
guaranteed to remain on the boundaries of the active constraints.

The matrix Zk is formed from the last m – l columns of the QR decomposition

of the matrix Sk
T , where l is the number of active constraints and l < m.

That is, Zk is given by

Z Q l mk = +[ ]:, : ,1 (6-89)

where

Q S
RT

k
T =

⎡

⎣
⎢
⎤

⎦
⎥0
.

Once Zk is found, a search direction dk is sought that minimizes the objective
function at dk, where dk is in the null space of the active constraints. That is,
dk is a linear combination of the columns of Zk: dk = Zkp for some vector p.

Then if you view the quadratic objective function as a function of p, by
substituting for dk, the result is

q p p Z HZ p c Z pT
k
T

k
T

k( ) .= +1
2 (6-90)

Differentiating this with respect to p yields
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∇q p Z HZ p Z ck
T

k k
T( ) .= + (6-91)

∇q(p) is referred to as the projected gradient of the quadratic function because

it is the gradient projected in the subspace defined by Zk. The term Z HZk
T

k
is called the projected Hessian. Assuming the Hessian matrix H is positive
definite, the minimum of the function q(p) in the subspace defined by Zk
occurs when ∇q(p) = 0, which is the solution of the system of linear equations

Z HZ p Z ck
T

k k
T= − . (6-92)

The next step is

x x d d Z pk k k k k
T

+ = + =1  , .  where (6-93)

At each iteration, because of the quadratic nature of the objective function,
there are only two choices of step length α. A step of unity along dk is the
exact step to the minimum of the function restricted to the null space of Sk.
If such a step can be taken, without violation of the constraints, then this
is the solution to QP (Equation 6-88). Otherwise, the step along dk to the
nearest constraint is less than unity and a new constraint is included in the
active set at the next iteration. The distance to the constraint boundaries in
any direction dk is given by
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which is defined for constraints not in the active set, and where the direction

dk is towards the constraint boundary, i.e., A d i mi k > =0 1, ,..., .

Lagrange multipliers, λk, are calculated that satisfy the nonsingular set of
linear equations

S ck
T

k = . (6-95)

If all elements of λk are positive, xk is the optimal solution of QP (Equation
6-88). However, if any component of λk is negative, and the component does
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not correspond to an equality constraint, then the corresponding element is
deleted from the active set and a new iterate is sought.

Initialization
The algorithm requires a feasible point to start. If the initial point is not
feasible, then you can find a feasible point by solving the linear programming
problem

min

, ,...,
,


∈ℜ ∈ℜ

= =
 

  such that

       (the rows 
x

i i e

n

A x b i m1 oof 
    (the rows of 

Aeq

A x b i m m Ai i e

)
, ,..., ).− ≤ = + 1 (6-96)

The notation Ai indicates the ith row of the matrix A. You can find a feasible
point (if one exists) to Equation 6-96 by setting x to a value that satisfies
the equality constraints. You can determine this value by solving an under-
or overdetermined set of linear equations formed from the set of equality
constraints. If there is a solution to this problem, the slack variable γ is set to
the maximum inequality constraint at this point.

You can modify the preceding QP algorithm for LP problems by setting the
search direction d to the steepest descent direction at each iteration, where
gk is the gradient of the objective function (equal to the coefficients of the
linear objective function):

d Z Z gk k
T

k= − . (6-97)

If a feasible point is found using the preceding LP method, the main QP phase
is entered. The search direction dk is initialized with a search direction d1
found from solving the set of linear equations

Hd gk1 = − , (6-98)

where gk is the gradient of the objective function at the current iterate xk
(i.e., Hxk + c).
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Quadratic Minimization with Bound Constraints
To minimize a large-scale quadratic with upper and lower bounds, you can
use the quadprog function with the 'trust-region-reflective' algorithm.

The problem stored in the MAT-file qpbox1.mat is a positive definite
quadratic, and the Hessian matrix H is tridiagonal, subject to upper (ub) and
lower (lb) bounds.

Step 1: Load the Hessian and define f, lb, and ub.

load qpbox1 % Get H
lb = zeros(400,1); lb(400) = -inf;
ub = 0.9*ones(400,1); ub(400) = inf;
f = zeros(400,1); f([1 400]) = -2;

Step 2: Call a quadratic minimization routine with a
starting point xstart.

xstart = 0.5*ones(400,1);
options = optimoptions('quadprog','Algorithm','trust-region-reflective');
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Looking at the resulting values of exitflag and output,

exitflag,output

exitflag =
3

output =
algorithm: 'trust-region-reflective'

iterations: 19
constrviolation: 0

firstorderopt: 8.3903e-06
cgiterations: 1673

message: 'Optimization terminated: relative function value chan
than s...'

6-135



6 Optimization Algorithms and Examples

You can see that while convergence occurred in 20 iterations, the high
number of CG iterations indicates that the cost of the linear system solve is
high. In light of this cost, one strategy would be to limit the number of CG
iterations per optimization iteration. The default number is the dimension of
the problem divided by two, 200 for this problem. Suppose you limit it to 50
using the MaxPCGIter flag in options:

options = optimoptions(options,'MaxPCGIter',50);
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

This time convergence still occurs and the total number of CG iterations
(1547) has dropped:

exitflag,output

exitflag =
3

output =
algorithm: 'trust-region-reflective'

iterations: 36
constrviolation: 0

firstorderopt: 2.3821e-005
cgiterations: 1547

message: 'Optimization terminated: relative function value chan
than s...'

A second strategy would be to use a direct solver at each iteration by setting
the PrecondBandWidth option to inf:

options = optimoptions(options,'PrecondBandWidth',inf);
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,xstart,options);

Now the number of iterations has dropped to 10:

exitflag,output

exitflag =
3
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output =
algorithm: 'trust-region-reflective'

iterations: 10
constrviolation: 0

firstorderopt: 2.8219e-06
cgiterations: 0

message: 'Optimization terminated: relative function value chan
than s...'

Using a direct solver at each iteration usually causes the number of iterations
to decrease, but often takes more time per iteration. For this problem, the
tradeoff is beneficial, as the time for quadprog to solve the problem decreases
by a factor of 10.

You can also use the default 'interior-point-convex' algorithm to solve
this convex problem:

options =
optimoptions('quadprog','Algorithm','interior-point-convex');
[x,fval,exitflag,output] = ...

quadprog(H,f,[],[],[],[],lb,ub,[],options);

Check the exit flag and output structure:

exitflag,output

exitflag =
1

output =
message: 'Minimum found that satisfies the constraints.

Optimization completed bec...'
algorithm: 'interior-point-convex'

firstorderopt: 1.4120e-06
constrviolation: 0

iterations: 8
cgiterations: []
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Quadratic Minimization with Dense, Structured Hessian
The quadprog trust-region-reflective method can also solve large problems
where the Hessian is dense but structured. For these problems, quadprog
does not compute H*Y with the Hessian H directly, as it does for active-set
problems and for trust-region-reflective problems with sparse H, because
forming H would be memory-intensive. Instead, you must provide quadprog
with a function that, given a matrix Y and information about H, computes
W = H*Y.

In this example, the Hessian matrix H has the structure H = B + A*A' where
B is a sparse 512-by-512 symmetric matrix, and A is a 512-by-10 sparse
matrix composed of a number of dense columns. To avoid excessive memory
usage that could happen by working with H directly because H is dense, the
example provides a Hessian multiply function, qpbox4mult. This function,
when passed a matrix Y, uses sparse matrices A and B to compute the Hessian
matrix product W = H*Y = (B + A*A')*Y.

In this example, the matrices A and B need to be provided to the Hessian
multiply function qpbox4mult. You can pass one matrix as the first argument
to quadprog, which is passed to the Hessian multiply function. You can use a
nested function to provide the value of the second matrix.

Step 1: Decide what part of H to pass to quadprog
as the first argument.
Either A or B can be passed as the first argument to quadprog. The example
chooses to pass B as the first argument because this results in a better
preconditioner (see “Preconditioning” on page 6-141).

quadprog(B,f,[],[],[],[],l,u,xstart,options)

Step 2: Write a function to compute Hessian-matrix
products for H.
Now, define a function runqpbox4 that

• Contains a nested function qpbox4mult that uses A and B to compute the
Hessian matrix product W, where W = H*Y = (B + A*A')*Y. The nested
function must have the form
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W = qpbox4mult(Hinfo,Y,...)

The first two arguments Hinfo and Y are required.

• Loads the problem parameters from qpbox4.mat.

• Uses optimoptions to set the HessMult option to a function handle that
points to qpbox4mult.

• Calls quadprog with B as the first argument.

The first argument to the nested function qpbox4mult must be the same as
the first argument passed to quadprog, which in this case is the matrix B.

The second argument to qpbox4mult is the matrix Y (of W = H*Y). Because
quadprog expects Y to be used to form the Hessian matrix product, Y is always
a matrix with n rows, where n is the number of dimensions in the problem.
The number of columns in Y can vary. The function qpbox4mult is nested so
that the value of the matrix A comes from the outer function. Optimization
Toolbox software includes the runqpbox4.m file.

function [fval, exitflag, output, x] = runqpbox4
%RUNQPBOX4 demonstrates 'HessMult' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

% Choose algorithm and the HessMult option
options = optimoptions(@quadprog,'Algorithm','trust-region-reflective','Hes

% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

function W = qpbox4mult(B,Y)
%QPBOX4MULT Hessian matrix product with dense structured Hessian.
% W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
% INPUT:
% B - sparse square matrix (512 by 512)
% Y - vector (or matrix) to be multiplied by B + A'*A.
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% VARIABLES from outer function runqpbox4:
% A - sparse matrix with 512 rows and 10 columns.
%
% OUTPUT:
% W - The product (B + A*A')*Y.
%

% Order multiplies to avoid forming A*A',
% which is large and dense
W = B*Y + A*(A'*Y);

end

end

Step 3: Call a quadratic minimization routine with a
starting point.
To call the quadratic minimizing routine contained in runqpbox4, enter

[fval,exitflag,output] = runqpbox4;

to run the preceding code. Then display the values for fval, exitflag, and
output. The results are

Optimization terminated: relative function value changing by
less than sqrt(OPTIONS.TolFun), no negative curvature detected
in current trust region model and the rate of progress (change
in f(x)) is slow.

fval,exitflag,output

fval =
-1.0538e+003

exitflag =
3

output =
algorithm: 'trust-region-reflective'

iterations: 18
constrviolation: 0
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firstorderopt: 0.0043
cgiterations: 30

message: 'Optimization terminated: relative function value chan
than s...'

After 18 iterations with a total of 30 PCG iterations, the function value is
reduced to

fval
fval =
-1.0538e+003

and the first-order optimality is

output.firstorderopt
ans =

0.0043

Preconditioning
In this example, quadprog cannot use H to compute a preconditioner because
H only exists implicitly. Instead, quadprog uses B, the argument passed in
instead of H, to compute a preconditioner. B is a good choice because it is the
same size as H and approximates H to some degree. If B were not the same
size as H, quadprog would compute a preconditioner based on some diagonal
scaling matrices determined from the algorithm. Typically, this would not
perform as well.

Because the preconditioner is more approximate than when H is available
explicitly, adjusting the TolPcg parameter to a somewhat smaller value
might be required. This example is the same as the previous one, but reduces
TolPcg from the default 0.1 to 0.01.

function [fval, exitflag, output, x] = runqpbox4prec
%RUNQPBOX4PREC demonstrates 'HessMult' option for QUADPROG with bounds.

problem = load('qpbox4'); % Get xstart, u, l, B, A, f
xstart = problem.xstart; u = problem.u; l = problem.l;
B = problem.B; A = problem.A; f = problem.f;
mtxmpy = @qpbox4mult; % function handle to qpbox4mult nested function

% Choose algorithm, the HessMult option, and override the TolPCG option
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options = optimoptions(@quadprog,'Algorithm','trust-region-reflective',...
'HessMult',mtxmpy,'TolPcg',0.01);

% Pass B to qpbox4mult via the H argument. Also, B will be used in
% computing a preconditioner for PCG.
% A is passed as an additional argument after 'options'
[x, fval, exitflag, output] = quadprog(B,f,[],[],[],[],l,u,xstart,options);

function W = qpbox4mult(B,Y)
%QPBOX4MULT Hessian matrix product with dense structured Hessian.
% W = qpbox4mult(B,Y) computes W = (B + A*A')*Y where
% INPUT:
% B - sparse square matrix (512 by 512)
% Y - vector (or matrix) to be multiplied by B + A'*A.
% VARIABLES from outer function runqpbox4prec:
% A - sparse matrix with 512 rows and 10 columns.
%
% OUTPUT:
% W - The product (B + A*A')*Y.
%

% Order multiplies to avoid forming A*A',
% which is large and dense
W = B*Y + A*(A'*Y);

end

end

Now, enter

[fval,exitflag,output] = runqpbox4prec;

to run the preceding code. After 18 iterations and 50 PCG iterations, the
function value has the same value to five significant digits

fval
fval =
-1.0538e+003

but the first-order optimality is further reduced.
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output.firstorderopt
ans =

0.0028

Note Decreasing TolPcg too much can substantially increase the number of
PCG iterations.
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Large Sparse Quadratic Program with Interior Point
Algorithm

This example shows the value of using sparse arithmetic when you have
a sparse problem. The matrix has n rows, where you choose n. For
some large n, the active-set algorithm runs out of memory, but the
interior-point-convex algorithm works fine.

The problem is to minimize x'*H*x/2 + f'*x subject to

x(1) + x(2) + ... + x(n) = 0,

where f = [-1;-2;-3;...;-n].

1 Create the parameter n and the utility matrix T. The matrix T is a
sparse circulant matrix that is simply a helper for creating the sparse
positive-definite quadratic matrix H.

n = 30000; % Adjust n to a large value
T = spalloc(n,n,n); % make a sparse circulant matrix
r = 1:n-1;
for m = r

T(m,m+1)=1;
end
T(n,1) = 1;

2 Create a sparse vector v. Then create the matrix H by shifted versions of
v*v'. The matrix T creates shifts of v.

v(n) = 0; v(1) = 1; v(2) = 2; v(4) = 3;
v = (sparse(v))';
% Make a banded type of matrix
H = spalloc(n,n,7*n);
r = 1:n;
for m = r

H = H + v*v';
v = T*v;

end

3 Take a look at the structure of H:
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spy(H)

4 Create the problem vector f and linear constraint.

f = -r; % linear term
A = ones(1,n); b = 0;

5 Solve the quadratic programming problem with the interior-point-convex
algorithm.

options =
optimoptions(@quadprog,'Algorithm','interior-point-convex');
[x,fval,exitflag,output,lambda] = ...

quadprog(H,f,A,b,[],[],[],[],[],options);

Minimum found that satisfies the constraints.
Optimization completed because the objective function is
non-decreasing in feasible directions, to within the selected
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value of the function tolerance, and constraints are satisfied
to within the selected value of the constraint tolerance.

6 View the solution value, output structure, and Lagrange multiplier:

fval,output,lambda

fval =
-3.1331e+10

output =
message: 'Minimum found that satisfies the constraints.

Optimization completed bec...'
algorithm: 'interior-point-convex'

firstorderopt: 1.2753e-04
constrviolation: 8.5020e-09

iterations: 6
cgiterations: []

lambda =
ineqlin: 1.5000e+004

eqlin: [0x1 double]
lower: [30000x1 double]
upper: [30000x1 double]

Since there are no lower bounds or upper bounds, all the values in
lambda.lower and lambda.upper are 0. The inequality constraint is active,
since lambda.ineqlin is nonzero.

7 Notice that quadprog with the active-set algorithm fails with an
out-of-memory error:

options = optimoptions(@quadprog,'Algorithm','active-set');
[x fval] = quadprog(H,f,A,b,[],[],[],[],[],options);

Warning: Cannot use sparse matrices with active-set algorithm: converting t
> In quadprog at 409
Error using full
Out of memory. Type HELP MEMORY for your options.
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Error in quadprog (line 410)
H = full(H); A = full(A); Aeq = full(Aeq);
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Binary Integer Programming Algorithms

In this section...

“Binary Integer Programming Definition” on page 6-148

“bintprog Algorithm” on page 6-148

Binary Integer Programming Definition
Binary integer programming is the problem of finding a binary vector x that
minimizes a linear function fTx subject to linear constraints:

min
x

Tf x

such that A·x ≤ b, Aeq·x = beq, x binary.

bintprog Algorithm
bintprog uses a linear programming (LP)-based branch-and-bound algorithm
to solve binary integer programming problems. The algorithm searches for
an optimal solution to the binary integer programming problem by solving a
series of LP-relaxation problems, in which the binary integer requirement on
the variables is replaced by the weaker constraint 0 ≤ x ≤ 1. The algorithm

• Searches for a binary integer feasible solution

• Updates the best binary integer feasible point found so far as the search
tree grows

• Verifies that no better integer feasible solution is possible by solving a
series of linear programming problems

The following sections describe the branch-and-bound method in greater
detail.

Branching
The algorithm creates a search tree by repeatedly adding constraints to the
problem, that is, "branching." At a branching step, the algorithm chooses a
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variable xj whose current value is not an integer and adds the constraint xj = 0
to form one branch and the constraint xj = 1 to form the other branch. This
process can be represented by a binary tree, in which the nodes represent the
added constraints. The following picture illustrates a complete binary tree
for a problem that has three variables, x1, x2, and x3. Note that, in general,
the order of the variables going down the levels in the tree is not the usual
order of their subscripts

Deciding Whether to Branch
At each node, the algorithm solves an LP-relaxation problem using the
constraints at that node and decides whether to branch or to move to another
node depending on the outcome. There are three possibilities:

• If the LP-relaxation problem at the current node is infeasible or its optimal
value is greater than that of the best integer point, the algorithm removes
the node from the tree, after which it does not search any branches below
that node. The algorithm then moves to a new node according to the
method you specify in NodeSearchStrategy option.

• If the algorithm finds a new feasible integer point with lower objective
value than that of the best integer point, it updates the current best integer
point and moves to the next node.

• If the LP-relaxation problem is optimal but not integer and the optimal
objective value of the LP relaxation problem is less than the best integer
point, the algorithm branches according to the method you specify in the
BranchStrategy option.

See “Options” on page 10-6 for a description of the NodeSearchStrategy and
BranchStrategy options.
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Bounds
The solution to the LP-relaxation problem provides a lower bound for the
binary integer programming problem. If the solution to the LP-relaxation
problem is already a binary integer vector, it provides an upper bound for the
binary integer programming problem.

As the search tree grows more nodes, the algorithm updates the lower and
upper bounds on the objective function, using the bounds obtained in the
bounding step. The bound on the objective value serves as the threshold to
cut off unnecessary branches.

Limits for the Algorithm
The algorithm for bintprog could potentially search all 2n binary integer
vectors, where n is the number of variables. As a complete search might take
a very long time, you can limit the search using the following options

• MaxNodes— Maximum number of nodes the algorithm searches

• MaxRLPIter — Maximum number of iterations the LP-solver performs
at any node

• MaxTime— Maximum amount of time in seconds the algorithm runs

See “Options” on page 10-6 for more information.
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Optimal Investments Via Binary Integer Programming

In this section...

“Investments with Constraints” on page 6-151

“Problem Statement” on page 6-151

“bintprog Formulation” on page 6-153

“bintprog Solution” on page 6-155

Investments with Constraints
This example uses bintprog to solve an integer programming problem that
is not obviously a binary integer programming problem. This is done by
representing each nonbinary integer-valued variable as an appropriate sum of
binary variables, and by using linear constraints carefully. While the example
is not particularly realistic, it demonstrates a variety of techniques:

• How to formulate nonbinary integer programming problems

• How to formulate an objective and constraints

• How to use indicator variables (yi in the example)

Problem Statement
There are five investment opportunities labeled 1, 2, 3, 4, and 5. The
investments have the costs and payoffs listed in the following table.

Investment Buy-In Cost Cost/Unit Payoff/Unit Max # Units

1 $25 $5 $15 5

2 $35 $7 $25 4

3 $28 $6 $17 5

4 $20 $4 $13 7

5 $40 $8 $18 3

• The maximum total investment is $125.

• The problem is to maximize profit, which is payoff minus cost.
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• The payoff is the sum of the units bought times the payoff/unit.

• The cost per investment is the buy-in cost plus the cost/unit times the
number of units if you buy at least one unit; otherwise, it is 0.

• The cost is the sum of the costs per investment.

It is convenient to formulate this problem using the indicator variables yi.
Define these as yi = 1 when corresponding quantity variable xi is positive,
and yi = 0 when xi = 0:

• xi = # units purchased of investment i

• yi = 1 if xi > 0, yi = 0 otherwise

• cost = Σ(Buy-in cost)i ·yi + Σ(cost/unit)i ·xi

• payoff = Σ(payoff/unit)i ·xi

• profit = payoff – cost

In addition, there are several constraints on the investments:

• You may not invest in both 2 and 5.

• You may invest in 1 only if you invest in at least one of 2 and 3.

• You must invest in at least two of 3, 4, and 5.

• You may not invest more than the listed maximum number of units in
each investment.

The constraints are represented in symbols as follows:

• y2 + y5 ≤ 1

• y1 ≤ y2 + y3

• y3 + y4 + y5 ≥ 2

• x1 ≤ 5; x2 ≤ 4; x3 ≤ 5; x4 ≤ 7; x5 ≤ 3

• cost ≤ 125
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bintprog Formulation
To frame this problem as a binary integer programming problem, perform the
following steps:

1 Represent each integer variable xi by three binary integer variables zi,j,
j = 1,...,3, as follows:

xi = zi,1 + 2zi,2 + 4zi,3, i = 1,...,5.

Three zi,j suffice to represent xi, since each xi is assumed to be 7 or less.
And, since x5 ≤ 3, z5,3 = 0.

2 Combine the variables y and z into a single vector t as follows:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19
y1 y2 y3 y4 y5 z1,1 z1,2 z1,3 z2,1 z2,2 z2,3 z3,1 z3,2 z3,3 z4,1 z4,2 z4,3 z5,1 z5,2

3 Include the constraints yi = 0 if and only if all the corresponding zi,j = 0 as
follows:

• yi ≤ zi,1 + zi,2 + zi,3

• zi,1 + 2zi,2 + 4zi,3 ≤ yi*(Max # unitsi)

These two inequalities enforce yi = 0 if and only if all the zi,j = 0, and they
also enforce the maximum # units constraints.

4 As described in “Maximizing an Objective” on page 2-31, you find a
maximum of an objective function by minimizing the negative of the
objective function. So, to find the maximum profit, minimize the negative
of the profit. The vector f that gives the negative of the profit in the form
f'*t is

f = [25,35,28,20,40,-10,-20,-40,-18,-36,-72,-11,-22,-44,...
-9,-18,-36,-10,-20]';

• The first five entries in f represent the buy-in costs; these are incurred
if the corresponding yi = 1.
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• The next three entries, f(6), f(7), and f(8), represent the negative
of payoff minus cost per unit for investment 1, –($15 – $5), multiplied
by 1, 2, and 4 respectively.

• The entries f(9), f(10), and f(11) represent the corresponding
quantities for investment 2: –($25 – $7), multiplied by 1, 2, and 4.

• f(12), f(13), and f(14) correspond to investment 3

• f(15), f(16), and f(17) correspond to investment 4

• f(18) and f(19) correspond to investment 5

5 Formulate all the constraints as inequalities of the form A·t ≤ b, as
required in the bintprog formulation “Binary Integer Programming
Definition” on page 6-148.

The following matrix A represents the constraints, along with the vector b:

A = zeros(14,19);
A(1,1:19) = [25 35 28 20 40 5 10 20 7 14 28 ...

6 12 24 4 8 16 8 16];
A(2,1) = 1; A(2,6) = -1; A(2,7) = -1; A(2,8) = -1;
A(3,2) = 1; A(3,9) = -1; A(3,10) = -1; A(3,11) = -1;
A(4,3) = 1; A(4,12) = -1; A(4,13) = -1; A(4,14) = -1;
A(5,4) = 1; A(5,15) = -1; A(5,16) = -1; A(5,17) = -1;
A(6,5) = 1; A(6,18) = -1; A(6,19) = -1;
A(7,1) = -5; A(7,6) = 1; A(7,7) = 2; A(7,8) = 4;
A(8,2) = -4; A(8,9) = 1; A(8,10) = 2; A(8,11) = 4;
A(9,3) = -5; A(9,12) = 1; A(9,13) = 2; A(9,14) = 4;
A(10,4) = -7; A(10,15) = 1; A(10,16) = 2; A(10,17) = 4;
A(11,5) = -3; A(11,18) = 1; A(11,19) = 2;
A(12,2) = 1; A(12,5) = 1;
A(13,1) = 1; A(13,2) = -1; A(13,3) = -1;
A(14,3) = -1; A(14,4) = -1; A(14,5) = -1;
b = [125 0 0 0 0 0 0 0 0 0 0 1 0 -2]';

• The first row of A represents the cost structure; no more than $125 is
available.

• Rows 2 through 6 represent yi ≤ Σj zi,j, i = 1,...,5.
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• Rows 7 through 11 represent the maximum # units constraints. They also
enforce yi = 1 when Σj zi,j > 0.

• Rows 12, 13, and 14 represent the other constraints on investments.

bintprog Solution
bintprog solves the optimization problem as follows:

[t fval exitflag output] = bintprog(f,A,b);
Optimization terminated.

To examine the result, enter

t',fval

ans =
Columns 1 through 10

0 0 1 1 0 0 0 0 0 0
Columns 11 through 19

0 1 0 1 1 1 1 0 0

fval =
-70

You can easily see that the only positive values of y are y3 and y4. The values
of x that correspond to these, x3 and x4, are

t(12) + 2*t(13) + 4*t(14)
ans =

5

t(15) + 2*t(16) + 4*t(17)
ans =

7

In other words, to obtain the maximum profit, $70, invest in 5 units of 3 and 7
units of 4. By the way, this uses only

28 + (5*6) + 20 + (7*4) = 106

of the $125 you had to invest, so there is $19 left uninvested. You can also
see this by checking the first constraint, [A*t](1):
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A(1,:)*t
ans =

106
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Mixed-Integer Linear Programming Algorithms

In this section...

“Mixed-Integer Linear Programming Definition” on page 6-157

“intlinprog Algorithm” on page 6-157

Mixed-Integer Linear Programming Definition
A mixed-integer linear program is a problem with

• Linear objective function, fTx, where f is a column vector of constants, and x
is the column vector of unknowns

• Bounds and linear constraints, but no nonlinear constraints (for definitions,
see “Writing Constraints” on page 2-33)

• Restrictions on some components of x to have integer values

In mathematical terms, given vectors f, lb, and ub, matrices A and Aeq,
corresponding vectors b and beq, and a set of indices intcon, find a vector x
to solve

min

( )

x

Tf x

x
A x
Aeq x beq
lb

b
 subject to 

intcon  are integers

 


 xx ub









 .

intlinprog Algorithm

• “Algorithm Overview” on page 6-158

• “Linear Program Preprocessing” on page 6-158

• “Linear Programming” on page 6-159

• “Mixed-Integer Program Preprocessing” on page 6-159

• “Cut Generation” on page 6-160

• “Heuristics for Finding Feasible Solutions” on page 6-161
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• “Branch and Bound” on page 6-161

Algorithm Overview
intlinprog uses this basic strategy to solve mixed-integer linear programs.
intlinprog can solve the problem in any of the stages. If it solves the problem
in a stage, intlinprog does not execute the later stages.

1 Reduce the problem size using “Linear Program Preprocessing” on page
6-158.

2 Solve an initial relaxed (noninteger) problem using “Linear Programming”
on page 6-159.

3 Perform “Mixed-Integer Program Preprocessing” on page 6-159 to tighten
the LP relaxation of the mixed-integer problem.

4 Try “Cut Generation” on page 6-160 to further tighten the LP relaxation of
the mixed-integer problem.

5 Try to find integer-feasible solutions using heuristics.

6 Use a “Branch and Bound” on page 6-161 algorithm to search systematically
for the optimal solution. This algorithm solves LP relaxations with
restricted ranges of possible values of the integer variables. It attempts to
generate a sequence of updated bounds on the optimal objective function
value.

Linear Program Preprocessing
According to the “Mixed-Integer Linear Programming Definition” on page
6-157, there are matrices A and Aeq and corresponding vectors b and beq that
encode a set of linear inequalities and linear equalities

A x b
Aeq x beq

·
· .




These linear constraints restrict the solution x.

Usually, it is possible to reduce the number of variables in the problem (the
number of components of x), and reduce the number of linear constraints.
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While performing these reductions can take time for the solver, they usually
lower the overall time to solution, and can make larger problems solvable.
The algorithms can make solution more numerically stable. Furthermore,
these algorithms can sometimes detect an infeasible problem.

Preprocessing steps aim to eliminate redundant variables and constraints,
improve the scaling of the model and sparsity of the constraint matrix,
strengthen the bounds on variables, and detect the primal and dual
infeasibility of the model.

For details, see Andersen and Andersen [1] and Mészáros and Suhl [4].

Linear Programming
The initial relaxed problem is the linear programming problem with the same
objective and constraints as “Mixed-Integer Linear Programming Definition”
on page 6-157, but no integer constraints. Call xLP the solution to the relaxed
problem, and x the solution to the original problem with integer constraints.
Clearly,

fTxLP ≤ f
Tx,

because xLP minimizes the same function but with fewer restrictions.

This initial relaxed LP (root node LP) and all generated LP relaxations
during the branch-and-bound algorithm are solved using linear programming
solution techniques.

Mixed-Integer Program Preprocessing
During mixed-integer program preprocessing, intlinprog analyzes the linear
inequalities A*x b along with integrality restrictions to determine whether:

• The problem is infeasible.

• Some bounds can be tightened.

• Some inequalities are redundant, so can be ignored or removed.

• Some inequalities can be strengthened.

• Some integer variables can be fixed.
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The IPPreprocess option lets you choose whether intlinprog takes several
steps, takes all of them, or takes almost none of them.

The main goal of mixed-integer program preprocessing is to simplify
ensuing branch-and-bound calculations. Preprocessing involves quickly
preexamining and eliminating some of the futile subproblem candidates that
branch-and-bound would otherwise analyze.

For details about integer preprocessing, see Savelsbergh [6].

Cut Generation
Cuts are additional linear inequality constraints that intlinprog adds to the
problem. These inequalities attempt to restrict the feasible region of the LP
relaxations so that their solution are closer to integers. You control the type
of cuts that intlinprog uses with the CutGeneration option.

'basic' cuts include:

• Mixed-integer rounding cuts

• Gomory cuts

• Cliques cuts

• Cover cuts

• Flow cover cuts

'intermediate' cuts include all 'basic' cuts, plus:

• Simple lift-and-project cuts

• Simple pivot-and-reduce cuts

• Reduce-and-split cuts

'advanced' cuts include all 'intermediate' cuts except reduce-and-split
cuts, plus:

• Strong Chvatal-Gomory cuts

• Zero-half cuts
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Another option, CutGenMaxIter, specifies an upper bound on the number of
times intlinprog iterates to generate cuts.

For details about cut generation algorithms (also called cutting plane
methods), see Cornuéjols [2].

Heuristics for Finding Feasible Solutions
To get an upper bound on the objective function, the branch-and-bound
procedure must find feasible points. A solution to an LP relaxation during
branch-and-bound can be integer feasible, which can provide an improved
upper bound to the original MILP. There are techniques for finding feasible
points faster before and/or during branch-and-bound. These techniques are
heuristic, meaning they are algorithms that can succeed, but can also fail.
You set the intlinprog heuristics in the Heuristics option. The options are:

• 'rins' — intlinprog searches the neighborhood of the current best
integer feasible solution point (if available) to find a new and better
solution. See Danna, Rothberg, and Le Pape [3].

• 'rss' — intlinprog applies a hybrid procedure combining ideas from
'rins' and local branching to search for integer feasible solutions.

• 'round'— intlinprog takes the LP solution to the relaxed problem at a
node. It rounds the integer components in a way that attempts to maintain
feasibility.

• 'none'— intlinprog does not search for a feasible point. It simply takes
any feasible point it encounters in its branch-and-bound search.

Branch and Bound
The branch-and-bound method constructs a sequence of subproblems that
attempt to converge to a solution of the MILP. The subproblems give a
sequence of upper and lower bounds on the solution fTx. The first upper bound
is any feasible solution, and the first lower bound is the solution to the relaxed
problem. For a discussion of the upper bound, see “Heuristics for Finding
Feasible Solutions” on page 6-161.

As explained in “Linear Programming” on page 6-159, any solution to the
linear programming relaxed problem has a lower objective function value
than the solution to the MILP. Also, any feasible point xfeas satisfies
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fTxfeas ≥ f
Tx,

because fTx is the minimum among all feasible points.

In this context, a node is an LP with the same objective function, bounds, and
linear constraints as the original problem, but without integer constraints,
and with particular changes to the linear constraints or bounds. The root
node is the original problem with no integer constraints and no changes to the
linear constraints or bounds, meaning the root node is the initial relaxed LP.

From the starting bounds, the branch-and-bound method constructs new
subproblems by branching from the root node. The branching step is taken
heuristically, according to one of several rules. Each rule is based on the idea
of splitting a problem by restricting one variable to be less than or equal to
an integer J, or greater than or equal to J+1. These two subproblems arise
when an entry in xLP, corresponding to an integer specified in intcon, is not
an integer. Here, xLP is the solution to a relaxed problem. Take J as the floor
of the variable (rounded down), and J+1 as the ceiling (rounded up). The
resulting two problems have solutions that are larger than or equal to fTxLP,
because they have more restrictions. Therefore, this procedure potentially
raises the lower bound.

The performance of the branch-and-bound method depends on the rule for
choosing which variable to split (the branching rule). The algorithm uses
these rules, which you can set in the BranchingRule option:

• 'maxpscost'— Choose the fractional variable with maximal pseudocost.

Pseudocost

The peudocost of a variable i is based on empirical estimates of the change
in the lower bound when i has been chosen as the branching variable,
combined with the fractional part of the i component of the current point x.
The fractional part p is in two pieces, the lower part and the upper part:

pi
– = x(i) – x(i)

pi
+ = 1 – pi

–.

Let xi
– be the solution of the linear program restricted to have x(i) ≤ x(i),

and let the change in objective function be denoted
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Δi
– = fTxi

– – fTx.

Similarly, Δi
+ is the change in objective function when the problem is

restricted to have x(i) ≥ x(i).

The objective gain per unit change in variable xi is

d
p

d
p

i
i

i
i

i

i










 
 

 or .

Let si
– and si

+ be the empirical averages of di
– and di

+ during the
branch-and-bound algorithm up to this point. The empirical values are
initialized to the absolute value of the objective coefficient f(i) for the
terms before there are any observations. Then the 'maxpscost' rule is to
branch on a node i that maximizes, for some positive weights w+ and w–,
the quantity

w– * pi
– * si

– + w+ * pi
+ * si

+.

Roughly speaking, this rule chooses a coefficient that is likely to increase
the lower bound maximally.

• 'mostfractional' — Choose the variable with fractional part closest to
1/2.

• 'maxfun' — Choose the variable with maximal corresponding absolute
value in the objective vector f.

After the algorithm branches, there are two new nodes to explore. The
algorithm chooses which node to explore among all that are available using
one of these rules:

• 'minobj'— Choose the node that has the lowest objective function value.

• 'mininfeas' — Choose the node with the minimal sum of integer
infeasibilities. This means for every integer-infeasible component x(i) in
the node, add up the smaller of pi

– and pi
+, where

pi
– = x(i) – x(i)

pi
+ = 1 – pi

–.
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• 'simplebestproj'— Choose the node with the best projection.

Best Projection

Let xB denote the best integer-feasible point found so far, xR demote the
LP relaxed solution at the root node, and x denote the node we examine.
Let in(x) denote the sum of integer infeasibilities at the node x (see
'mininfeas'). The best projection rule is to minimize

f x
f x f x

in x
in xT

T
B

T
R

R




 
 .

If there is no integer-feasible point found so far, set fTxB = 0.

The branch-and-bound procedure continues, systematically generating
subproblems to analyze and discarding the ones that won’t improve an upper
or lower bound on the objective, until one of these stopping criteria is met:

• The algorithm exceeds the MaxTime option.

• The difference between the lower and upper bounds on the objective
function is less than the TolGapAbs or TolGapRel tolerances.

• The number of explored nodes exceeds the MaxNodes option.

• The number of integer feasible points exceeds the MaxNumFeasPoints
option.

For details about the branch-and-bound procedure, see Nemhauser and
Wolsey [5] and Wolsey [7].
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Tuning Integer Linear Programming

In this section...

“Change Options to Improve the Solution Process” on page 6-166

“Some “Integer” Solutions Are Not Integers” on page 6-167

“Large Components Not Integer Valued” on page 6-168

“Large Coefficients Disallowed” on page 6-168

Change Options to Improve the Solution Process

Note Often, you can change the formulation of a MILP to make it more easily
solvable. For suggestions on how to change your formulation, see Williams [1].

After you run intlinprog once, you might want to change some options and
rerun it. The changes you might want to see include:

• Lower run time

• Lower final objective function value (a better solution)

• Smaller final gap

• More or different feasible points

Here are general recommendations for option changes that are most likely to
help the solution process. Try the suggestions in this order:

1 For a faster and more accurate solution, increase the CutGenMaxIter
option from its default 10 to a higher number such as 25. This can speed up
the solution, but can also slow it.

2 For a faster and more accurate solution, change the CutGeneration option
to 'intermediate' or 'advanced'. This can speed up the solution, but can
use much more memory, and can slow the solution.
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3 For a faster and more accurate solution, change the IPPreprocess option
to 'advanced'. This can have a large effect on the solution process, either
beneficial or not.

4 For a faster and more accurate solution, change the RootLPAlgorithm
option to 'primal-simplex'. Usually this change is not beneficial, but
occasionally it can be.

5 To try to find more or better feasible points, increase the
HeuristicsMaxNodes option from its default 50 to a higher number such
as 100.

6 To try to find more or better feasible points, change the Heuristics option
to either 'round' or 'rins'.

7 To attempt to stop the solver more quickly, change the TolGapRel option
to a higher value than the default 1e-4. Similarly, to attempt to obtain
a more accurate answer, change the TolGapRel option to a lower value.
These changes do not always improve results.

8 For a more accurate solution, decrease the RelObjThreshold option from
its default 1e-4 to a smaller positive value such as 1e-6. This change can
cause intlinprog to take more time to solve the problem, and to find more
integer feasible points during its solution process.

Some “Integer” Solutions Are Not Integers
Often, some supposedly integer-valued components of the solution x(intcon)
are not precisely integers. intlinprog considers as integers all solution
values within the TolInteger tolerance of an integer.

To round all supposed integers to be precisely integers, use the round function.

x(intcon) = round(x(intcon));
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Caution Rounding can cause solutions to become infeasible. Check
feasibility after rounding:

max(A*x - b) % see if entries are not too positive, so have small infeasibi
max(abs(Aeq*x - beq)) % see if entries are near enough to zero
max(x - ub) % positive entries are violated bounds
max(lb - x) % positive entries are violated bounds

Large Components Not Integer Valued
intlinprog does not enforce that solution components be integer valued
when their absolute values exceed 2.1e9. When your solution has such
components, intlinprog warns you. If you receive this warning, check the
solution to see whether supposedly integer-valued components of the solution
are close to integers.

Large Coefficients Disallowed
intlinprog does not allow components of the problem, such as coefficients
in f, A, or ub, to exceed 1e15 in absolute value. If you try to run intlinprog
with such a problem, intlinprog issues an error.

If you get this error, sometimes you can scale the problem to have smaller
coefficients:

• For coefficients in f that are too large, try multiplying f by a small positive
scaling factor.

• For constraint coefficients that are too large, try multiplying all bounds and
constraint matrices by the same small positive scaling factor.

References
[1] Williams, H. Paul. Model Building in Mathematical Programming. Wiley,
2013.
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Mixed-Integer Linear Programming Basics
This example shows how to solve a mixed-integer linear program. The
example is not complex, but it shows typical steps in formulating a problem in
the syntax for intlinprog.

Problem description

You want to blend a variety of steels with various chemical compositions to
obtain 25 tons of steel with a specific chemical composition. The result should
have 5% carbon and 5% molybdenum by weight, meaning 25 tons*5% = 1.25
tons of carbon and 1.25 tons of molybdenum. The objective is to minimize the
cost for blending the steel.

This problem is taken from Carl-Henrik Westerberg, Bengt Bjorklund and
Eskil Hultman, “An Application of Mixed Integer Programming in a Swedish
Steel Mill.” Interfaces February 1977 Vol. 7, No. 2 pp. 39–43, whose abstract is
at http://interfaces.journal.informs.org/content/7/2/39.abstract.

Four ingots of steel are available for purchase. Only one of each ingot is
available.

Ingot Weight
(tons)

%Carbon %MolybdenumCost/ton

1 5 5 3 $350

2 3 4 3 $330

3 4 5 4 $310

4 6 3 4 $280

Three grades of alloy steel are available for purchase, and one grade of scrap
steel. Alloy and scrap steels can be purchased in fractional amounts.

Alloy %Carbon %Molybdenum Cost/ton

1 8 6 $500

2 7 7 $450
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Alloy %Carbon %Molybdenum Cost/ton

3 6 8 $400

Scrap 3 9 $100

To formulate the problem, first decide on the control variables. Take variable
x(1) = 1 to mean you purchase ingot 1, and x(1) = 0 to mean you do
not purchase the ingot. Similarly, variables x(2) through x(4) are binary
variables indicating that you purchase ingots 2 through 4.

Variables x(5) through x(7) are the quantities of alloys 1, 2, and 3 you
purchase, and x(8) is the quantity of scrap steel you purchase.

MATLAB formulation

Formulate the problem by specifying the inputs for intlinprog. The relevant
intlinprog syntax is as follows.

[x,fval] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

Create the inputs for intlinprog from first (f) through last (ub).

f is the vector of cost coefficients. The coefficients representing the costs of
ingots are the ingot weights times their cost per ton.

f = [350*5,330*3,310*4,280*6,500,450,400,100];

The integer variables are the first four.

intcon = 1:4;

Tip To specify binary variables, set the variables to be integers in intcon,
and give them a lower bound of 0 and an upper bound of 1.

There are no linear inequality constraints, so A and b are empty [].

There are three equality constraints. The first is that the total weight is
25 tons.
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5*x(1) + 3*x(2) + 4*x(3) + 6*x(4) + x(5) + x(6) + x(7) + x(8)
= 25.

The second constraint is that the weight of carbon is 5% of 25 tons, or 1.25
tons.

5*0.05*x(1) + 3*0.04*x(2) + 4*0.05*x(3) + 6*0.03*x(4)
+ 0.08*x(5) + 0.07*x(6) + 0.06*x(7) + 0.03*x(8) = 1.25.

The third constraint is that the weight of molybdenum is 1.25 tons.

5*0.03*x(1) + 3*0.03*x(2) + 4*0.04*x(3) + 6*0.04*x(4)
+ 0.06*x(5) + 0.07*x(6) + 0.08*x(7) + 0.09*x(8) = 1.25.

In matrix form, Aeq*x = beq, where

Aeq = [5,3,4,6,1,1,1,1;
5*0.05,3*0.04,4*0.05,6*0.03,0.08,0.07,0.06,0.03;
5*0.03,3*0.03,4*0.04,6*0.04,0.06,0.07,0.08,0.09];

beq = [25;1.25;1.25];

Each variable is bounded below by zero. The integer variables are bounded
above by one.

lb = zeros(8,1);
ub = ones(8,1);
ub(5:end) = Inf; % No upper bound on noninteger variables

Solve the problem

Now that you have all the inputs, call the solver.

[x,fval] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub);

View the solution.

x,fval

x =

1.0000
1.0000
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0
1.0000
7.2500

0
0.2500
3.5000

fval =

8.4950e+03

The optimal purchase costs $8,495. Buy ingots 1, 2, and 4, but not 3, and buy
7.25 tons of alloy 1, 0.25 ton of alloy 3, and 3.5 tons of scrap steel.

Set intcon = [] to see the effect of solving the problem without integer
constraints. The solution is different, and is not sensible, because you cannot
purchase a fraction of an ingot.
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Factory, Warehouse, Sales Allocation Model
This example shows how to set up and solve a mixed-integer linear
programming problem. The problem is to find the optimal production and
distribution levels among a set of factories, warehouses, and sales outlets.

The example first generates random locations for factories, warehouses, and
sales outlets. Feel free to modify the scaling parameter , which scales both
the size of the grid in which the production and distribution facilities reside,
but also scales the number of these facilities so that the density of facilities of
each type per grid area is independent of .

Facility Locations

For a given value of the scaling parameter , suppose that there are the
following:

• factories

• warehouses

• sales outlets

These facilities are on separate integer grid points between 1 and in the and
directions. In order that the facilities have separate locations, you require
that . In this example, take , , , and .

Production and Distribution

There are products made by the factories. Take .

The demand for each product in a sales outlet is . The demand is the
quantity that can be sold in a time interval. One constraint on the model is
that the demand is met, meaning the system produces and distributes exactly
the quantities in the demand.

There are capacity constraints on each factory and each warehouse.

• The production of product at factory is less than .

• The capacity of warehouse is .
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• The amount of product that can be transported from warehouse to a
sales outlet in the time interval is less than , where is the turnover rate
of product .

Suppose that each sales outlet receives its supplies from just one warehouse.
Part of the problem is to determine the cheapest mapping of sales outlets to
warehouses.

Costs

The cost of transporting products from factory to warehouse, and from
warehouse to sales outlet, depends on the distance between the facilities, and
on the particular product. If is the distance between facilities and , then the
cost of shipping a product between these facilities is the distance times the
transportation cost :

The distance in this example is the grid distance, also known as the distance.
It is the sum of the absolute difference in coordinates and coordinates.

The cost of making a unit of product in factory is .

Optimization Problem

Given a set of facility locations, and the demands and capacity constraints,
find:

• A production level of each product at each factory

• A distribution schedule for products from factories to warehouses

• A distribution schedule for products from warehouses to sales outlets

These quantities must ensure that demand is satisfied and total cost is
minimized. Also, each sales outlet is required to receive all its products from
exactly one warehouse.

Variables and Equations for the Optimization Problem
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The control variables, meaning the ones you can change in the optimization,
are

• = the amount of product that is transported from factory to warehouse

• = a binary variable taking value 1 when sales outlet is associated with
warehouse

The objective function to minimize is

The constraints are

(capacity of factory).

(demand is met).

(capacity of warehouse).

(each sales outlet associates to one warehouse).

(nonnegative production).

(binary ).

The variables and appear in the objective and constraint functions linearly.
Because is restricted to integer values, the problem is a mixed-integer linear
program (MILP).

Generate a Random Problem: Facility Locations

Set the values of the , , , and parameters, and generate the facility locations.

rng default % for reproducibility
N = 20; % N from 10 to 30 seems to work. Choose large values with caution.
N2 = N*N;
f = 0.05; % density of factories
w = 0.05; % density of warehouses
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s = 0.1; % density of sales outlets

F = floor(f*N2); % number of factories
W = floor(w*N2); % number of warehouses
S = floor(s*N2); % number of sales outlets

xyloc = randperm(N2,F+W+S); % unique locations of facilities
[xloc,yloc] = ind2sub([N N],xyloc);

Of course, it is not realistic to take random locations for facilities. This
example is intended to show solution techniques, not how to generate good
facility locations.

Plot the facilities. Facilities 1 through F are factories, F+1 through F+W are
warehouses, and F+W+1 through F+W+S are sales outlets.

plot(xloc(1:F),yloc(1:F),'rs',xloc(F+1:F+W),yloc(F+1:F+W),'k*',...
xloc(F+W+1:F+W+S),yloc(F+W+1:F+W+S),'bo')

legend('Factory','Warehouse','Sales outlet','Location','EastOutside')
xlim([0 N+1]);ylim([0 N+1])

Generate Random Capacities, Costs, and Demands

Generate random production costs, capacities, turnover rates, and demands.

P = 20; % 20 products

% Production costs between 20 and 100
pcost = 80*rand(F,P) + 20;

% Production capacity between 500 and 1500 for each product/factory
pcap = 1000*rand(F,P) + 500;

% Warehouse capacity between P*400 and P*800 for each product/warehouse
wcap = P*400*rand(W,P) + P*400;

% Product turnover rate between 1 and 3 for each product
turn = 2*rand(1,P) + 1;
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% Product transport cost per distance between 5 and 10 for each product
tcost = 5*rand(1,P) + 5;

% Product demand by sales outlet between 200 and 500 for each
% product/outlet
d = 300*rand(S,P) + 200;

These random demands and capacities can lead to infeasible problems. In
other words, sometimes the demand exceeds the production and warehouse
capacity constraints. If you alter some parameters and get an infeasible
problem, during solution you will get an exitflag of -2.

Generate Objective and Constraint Matrices and Vectors

The objective function vector obj in intlincon consists of the coefficients of
the variables and . So there are naturally P*F*W + S*W coefficients in obj.

One way to generate the coefficients is to begin with a P-by-F-by-W array
obj1 for the coefficients, and an S-by-W array obj2 for the coefficients. Then
convert these arrays to two vectors and combine them into obj by calling

obj = [obj1(:);obj2(:)];

obj1 = zeros(P,F,W); % Allocate arrays
obj2 = zeros(S,W);

Throughout the generation of objective and constraint vectors and matrices,
we generate the array or the array, and then convert the result to a vector.

To begin generating the inputs, generate the distance arrays distfw(i,j)
and distsw(i,j).

distfw = zeros(F,W); % Allocate matrix for factory-warehouse distances
for ii = 1:F

for jj = 1:W
distfw(ii,jj) = abs(xloc(ii) - xloc(F + jj)) + abs(yloc(ii) ...

- yloc(F + jj));
end

end
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distsw = zeros(S,W); % Allocate matrix for sales outlet-warehouse distances
for ii = 1:S

for jj = 1:W
distsw(ii,jj) = abs(xloc(F + W + ii) - xloc(F + jj)) ...

+ abs(yloc(F + W + ii) - yloc(F + jj));
end

end

Generate the entries of obj1 and obj2.

for ii = 1:P
for jj = 1:F

for kk = 1:W
obj1(ii,jj,kk) = pcost(jj,ii) + tcost(ii)*distfw(jj,kk);

end
end

end

for ii = 1:S
for jj = 1:W

obj2(ii,jj) = distsw(ii,jj)*sum(d(ii,:).*tcost);
end

end

Combine the entries into one vector.

obj = [obj1(:);obj2(:)]; % obj is the objective function vector

Now create the constraint matrices.

The width of each linear constraint matrix is the length of the obj vector.

matwid = length(obj);

There are two types of linear inequalities: the production capacity constraints,
and the warehouse capacity constraints.
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There are P*F production capacity constraints, and W warehouse capacity
constraints. The constraint matrices are quite sparse, on the order of 1%
nonzero, so save memory by using sparse matrices.

Aineq = spalloc(P*F + W,matwid,P*F*W + S*W); % Allocate sparse Aeq
bineq = zeros(P*F + W,1); % Allocate bineq as full

% Zero matrices of convenient sizes:
clearer1 = zeros(size(obj1));
clearer12 = clearer1(:);
clearer2 = zeros(size(obj2));
clearer22 = clearer2(:);

% First the production capacity constraints
counter = 1;
for ii = 1:F

for jj = 1:P
xtemp = clearer1;
xtemp(jj,ii,:) = 1; % Sum over warehouses for each product and fact
xtemp = sparse([xtemp(:);clearer22]); % Convert to sparse
Aineq(counter,:) = xtemp'; % Fill in the row
bineq(counter) = pcap(ii,jj);
counter = counter + 1;

end
end

% Now the warehouse capacity constraints
vj = zeros(S,1); % The multipliers
for jj = 1:S

vj(jj) = sum(d(jj,:)./turn); % A sum of P elements
end

for ii = 1:W
xtemp = clearer2;
xtemp(:,ii) = vj;
xtemp = sparse([clearer12;xtemp(:)]); % Convert to sparse
Aineq(counter,:) = xtemp'; % Fill in the row
bineq(counter) = wcap(ii);
counter = counter + 1;

end
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There are two types of linear equality constraints: the constraint that demand
is met, and the constraint that each sales outlet corresponds to one warehouse.

Aeq = spalloc(P*W + S,matwid,P*W*(F+S) + S*W); % Allocate as sparse
beq = zeros(P*W + S,1); % Allocate vectors as full

counter = 1;
% Demand is satisfied:
for ii = 1:P

for jj = 1:W
xtemp = clearer1;
xtemp(ii,:,jj) = 1;
xtemp2 = clearer2;
xtemp2(:,jj) = -d(:,ii);
xtemp = sparse([xtemp(:);xtemp2(:)]'); % Change to sparse row
Aeq(counter,:) = xtemp; % Fill in row
counter = counter + 1;

end
end

% Only one warehouse for each sales outlet:
for ii = 1:S

xtemp = clearer2;
xtemp(ii,:) = 1;
xtemp = sparse([clearer12;xtemp(:)]'); % Change to sparse row
Aeq(counter,:) = xtemp; % Fill in row
beq(counter) = 1;
counter = counter + 1;

end

Bound Constraints and Integer Variables

The integer variables are those from length(obj1) + 1 to the end.

intcon = P*F*W+1:length(obj);

The upper bounds are from length(obj1) + 1 to the end also.

lb = zeros(length(obj),1);
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ub = Inf(length(obj),1);
ub(P*F*W+1:end) = 1;

Turn off iterative display so that you don’t get hundreds of lines of output.

opts = optimoptions('intlinprog','Display','off');

Solve the Problem

You generated all the solver inputs. Call the solver to find the solution.

[solution,fval,exitflag,output] = intlinprog(obj,intcon,...
Aineq,bineq,Aeq,beq,lb,ub,opts);

if exitflag < 0 % If you changed some parameters and got an infeasible prob
disp('The problem with these parameters is infeasible. No solution.')
break % Stop the script because there is nothing to examine

end

Examine the Solution

The solution is feasible, to within the given tolerances.

exitflag
infeas1 = max(Aineq*solution - bineq)
infeas2 = norm(Aeq*solution - beq,Inf)

exitflag =

1

infeas1 =

1.1369e-12

infeas2 =

7.9581e-13
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Check that the integer components are really integers, or are close enough
that it is reasonable to round them. To understand why these variables might
not be exactly integers, see the documentation.

diffint = norm(solution(intcon) - round(solution(intcon)),Inf)

diffint =

4.4409e-16

Some integer variables are not exactly integers, but all are very close. So
round the integer variables.

solution(intcon) = round(solution(intcon));

Check the feasibility of the rounded solution, and the change in objective
function value.

infeas1 = max(Aineq*solution - bineq)
infeas2 = norm(Aeq*solution - beq,Inf)
diffrounding = norm(fval - obj(:)'*solution,Inf)

infeas1 =

1.1369e-12

infeas2 =

1.0232e-12

diffrounding =

4.8429e-08
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Rounding the solution did not appreciably change its feasibility.

You can examine the solution most easily by reshaping it back to its original
dimensions.

solution1 = solution(1:P*F*W); % The continuous variables
solution2 = solution(intcon); % The integer variables
solution1 = reshape(solution1,P,F,W);
solution2 = reshape(solution2,S,W);

For example, how many sales outlets are associated with each warehouse?
Notice that, in this case, some warehouses have 0 associated outlets, meaning
the warehouses are not in use in the optimal solution.

outlets = sum(solution2,1) % Sum over the sales outlets

outlets =

Columns 1 through 13

2 0 2 3 3 2 2 3 2 3 2 1

Columns 14 through 20

1 4 0 3 3 2 0

Plot the connection between each sales outlet and its warehouse.

hold on
for ii = 1:S

jj = find(solution2(ii,:)); % Index of warehouse associated with ii
xsales = xloc(F+W+ii); ysales = yloc(F+W+ii);
xwarehouse = xloc(F+jj); ywarehouse = yloc(F+jj);
if rand(1) < .5 % Draw y direction first half the time

plot([xsales,xsales,xwarehouse],[ysales,ywarehouse,ywarehouse],'g--
else % Draw x direction first the rest of the time
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plot([xsales,xwarehouse,xwarehouse],[ysales,ysales,ywarehouse],'g--
end

end
hold off

title('Mapping of sales outlets to warehouses')

The two black * with no green lines represent the unused warehouses.
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Travelling Salesman Problem
This example shows how to use binary integer programming to solve the
classic travelling salesman problem. This problem involves finding the
shortest closed tour (path) through a set of stops (cities). In this case there are
200 stops, but you can easily change the nStops variable to get a different
problem size. You’ll solve the initial problem and see that the solution has
subtours. This means the optimal solution found doesn’t give one continuous
path through all the points, but instead has several disconnected loops. You’ll
then use an iterative process of determining the subtours, adding constraints,
and rerunning the optimization until the subtours are eliminated.

Draw the Map and Stops

Generate random stops inside a crude polygonal representation of the
continental U.S.

figure;

load('usborder.mat','x','y','xx','yy');
rng(3,'twister') % makes a plot with stops in Maine & Florida, and is repro
nStops = 200; % you can use any number, but the problem size scales as N^2
stopsLon = zeros(nStops,1); % allocate x-coordinates of nStops
stopsLat = stopsLon; % allocate y-coordinates
n = 1;
while (n <= nStops)

xp = rand*1.5;
yp = rand;
if inpolygon(xp,yp,xx,yy) % test if inside the border

stopsLon(n) = xp;
stopsLat(n) = yp;
n = n+1;

end
end
plot(x,y,'Color','red'); % draw the outside border
hold on
% Add the stops to the map
plot(stopsLon,stopsLat,'*b')
hold off
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Problem Formulation

Formulate the travelling salesman problem for integer linear programming
as follows:

• Generate all possible trips, meaning all distinct pairs of stops.

• Calculate the distance for each trip.

• The cost function to minimize is the sum of the trip distances for each
trip in the tour.

• The decision variables are binary, and associated with each trip, where
each 1 represents a trip that exists on the tour, and each 0 represents a
trip that is not on the tour.

• To ensure that the tour includes every stop, include the linear constraint
that each stop is on exactly two trips. This means one arrival and one
departure from the stop.

Calculate Distances Between Points

Because there are 200 stops, there are 19,900 trips, meaning 19,900 binary
variables (# variables = 200 choose 2).

Generate all the trips, meaning all pairs of stops.

idxs = nchoosek(1:nStops,2);

Calculate all the trip distances, assuming that the earth is flat in order to use
the Pythagorean rule.

dist = hypot(stopsLat(idxs(:,1)) - stopsLat(idxs(:,2)), ...
stopsLon(idxs(:,1)) - stopsLon(idxs(:,2)));

lendist = length(dist);

With this definition of the dist vector, the length of a tour is
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dist'*x

where x is the binary solution vector. This is the distance of a tour that you
try to minimize.

Equality Constraints

The problem has two types of equality constraints. The first enforces that
there must be 200 trips total. The second enforces that each stop must have
two trips attached to it (there must be a trip to each stop and a trip departing
each stop).

Specify the first type of equality constraint, that you must have nStops trips,
in the form Aeq*x = beq.

Aeq = spones(1:length(idxs)); % Adds up the number of trips
beq = nStops;

To specify the second type of equality constraint, that there needs to be two
trips attached to each stop, extend the Aeq matrix as sparse.

Aeq = [Aeq;spalloc(nStops,length(idxs),nStops*(nStops-1))]; % allocate a sp
for ii = 1:nStops

whichIdxs = (idxs == ii); % find the trips that include stop ii
whichIdxs = sparse(sum(whichIdxs,2)); % include trips where ii is at ei
Aeq(ii+1,:) = whichIdxs'; % include in the constraint matrix

end
beq = [beq; 2*ones(nStops,1)];

Binary Bounds

All decision variables are binary. Now, set the intcon argument to the
number of decision variables, put a lower bound of 0 on each, and an upper
bound of 1.

intcon = 1:lendist;
lb = zeros(lendist,1);
ub = ones(lendist,1);

Optimize Using intlinprog
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The problem is ready to be solved. Call the solver.

opts = optimoptions('intlinprog','Display','off');
[xopt,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub

Visualize the Solution

hold on
segments = find(xopt); % Get indices of lines on optimal path
lh = zeros(nStops,1); % Use to store handles to lines on plot
lh = updateSalesmanPlot(lh,xopt,idxs,stopsLon,stopsLat);
title('Solution with Subtours');

As can be seen on the map, the solution has several subtours. The constraints
specified so far do not prevent these subtours from happening. In order to
prevent any possible subtour from happening, you would need an incredibly
large number of inequality constraints.

Subtour Constraints

Because you can’t add all of the subtour constraints, take an iterative
approach. Detect the subtours in the current solution, then add inequality
constraints to prevent those particular subtours from happening. By doing
this, you find a suitable tour in a few iterations.

Eliminate subtours with inequality constraints. An example of how this works
is if you have five points in a subtour, then you have five lines connecting
those points to create the subtour. Eliminate this subtour by implementing
an inequality constraint to say there must be less than or equal to four lines
between these five points.

Even more, find all lines between these five points, and constrain the solution
not to have more than four of these lines present. This is a correct constraint
because if five or more of the lines existed in a solution, then the solution
would have a subtour (a graph with nodes and edges always contains a cycle).
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The detectSubtours function analyzes the solution and returns a cell array
of vectors. Each vector in the cell array contains the stops involved in that
particular subtour.

tours = detectSubtours(xopt,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);

# of subtours: 28

Include the linear inequality constraints to eliminate subtours, and repeatedly
call the solver, until just one subtour remains.

A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint
b = [];
while numtours > 1 % repeat until there is just one subtour

% Add the subtour constraints
b = [b;zeros(numtours,1)]; % allocate b
A = [A;spalloc(numtours,lendist,nStops)]; % a guess at how many nonzero
for ii = 1:numtours

rowIdx = size(A,1)+1; % Counter for indexing
subTourIdx = tours{ii}; % Extract the current subtour

% The next lines find all of the variables associated with the
% particular subtour, then add an inequality constraint to prohibit
% that subtour and all subtours that use those stops.

variations = nchoosek(1:length(subTourIdx),2);
for jj = 1:length(variations)

whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...
(sum(idxs==subTourIdx(variations(jj,2)),2));

A(rowIdx,whichVar) = 1;
end
b(rowIdx) = length(subTourIdx)-1; % One less trip than subtour stop

end

% Try to optimize again
[xopt,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,

% Visualize result
lh = updateSalesmanPlot(lh,xopt,idxs,stopsLon,stopsLat);
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% How many subtours this time?
tours = detectSubtours(xopt,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);

end

title('Solution with Subtours Eliminated');
hold off

# of subtours: 16
# of subtours: 10
# of subtours: 5
# of subtours: 3
# of subtours: 4
# of subtours: 1

Solution Quality

The solution represents a feasible tour, because it is a single closed loop. But is
it a minimal-cost tour? One way to find out is to examine the output structure.

output

output =

relativegap: 0.0100
absolutegap: 0.0021

numfeaspoints: 5
numnodes: 1226

constrviolation: 2.0606e-13
message: 'Optimal solution found.

Intlinprog stopped because ...'
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The gap between the internally calculated upper and lower bounds on the
solution’s objective function, reported in the output structure, is 0. So the
solution is optimal.
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Solve Sudoku Puzzles Via Integer Programming
This example shows how to solve a Sudoku puzzle using binary integer
programming.

You probably have seen Sudoku puzzles. A puzzle is to fill a 9-by-9 grid with
integers from 1 through 9 so that each integer appears only once in each row,
column, and major 3-by-3 square. The grid is partially populated with clues,
and your task is to fill in the rest of the grid.

Initial Puzzle

Here is a data matrix B of clues. The first row, B(1,2,2), means row 1,
column 2 has a clue 2. The second row, B(1,5,3), means row 1, column 5 has
a clue 3. Here is the entire matrix B.

B = [1,2,2;
1,5,3;
1,8,4;
2,1,6;
2,9,3;
3,3,4;
3,7,5;
4,4,8;
4,6,6;
5,1,8;
5,5,1;
5,9,6;
6,4,7;
6,6,5;
7,3,7;
7,7,6;
8,1,4;
8,9,8;
9,2,3;
9,5,4;
9,8,2];

drawSudoku(B) % For the listing of this program, see the end of this exampl
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This puzzle, and an alternative MATLAB® solution technique, was featured
in Cleve’s Corner in 2009.

There are many approaches to solving Sudoku puzzles manually, as well
as many programmatic approaches. This example shows a straightforward
approach using binary integer programming.

This approach is particularly simple because you do not give a solution
algorithm. Just express the rules of Sudoku, express the clues as constraints
on the solution, and then intlinprog produces the solution.

Binary Integer Programming Approach

The key idea is to transform a puzzle from a square 9-by-9 grid to a cubic
9-by-9-by-9 array of binary values (0 or 1). Think of the cubic array as being
9 square grids stacked on top of each other. The top grid, a square layer of
the array, has a 1 wherever the solution or clue has a 1. The second layer has
a 1 wherever the solution or clue has a 2. The ninth layer has a 1 wherever
the solution or clue has a 9.

This formulation is precisely suited for binary integer programming.

The objective function is not needed here, and might as well be 0. The
problem is really just to find a feasible solution, meaning one that satisfies
all the constraints. However, for tiebreaking in the internals of the integer
programming solver, giving increased solution speed, use a nonconstant
objective function.

Express the Rules for Sudoku as Constraints

Suppose a solution is represented in a 9-by-9-by-9 binary array. What
properties does have? First, each square in the 2-D grid (i,j) has exactly one
value, so there is exactly one nonzero element among the 3-D array entries
. In other words, for every and ,
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Similarly, in each row of the 2-D grid, there is exactly one value out of each of
the digits from 1 to 9. In other words, for each and ,

And each column in the 2-D grid has the same property: for each and ,

The major 3-by-3 grids have a similar constraint. For the grid elements
and , and for each ,

To represent all nine major grids, just add 3 or 6 to each and index:

where

Express Clues

Each initial value (clue) can be expressed as a constraint. Suppose that the
clue is for some . Then . The constraint ensures that all other for .

Write the Rules for Sudoku

Although the Sudoku rules are conveniently expressed in terms of a
9-by-9-by-9 solution array x, linear constraints are given in terms of a vector
solution matrix x(:). Therefore, when you write a Sudoku program, you have
to use constraint matrices derived from 9-by-9-by-9 initial arrays.

Here is one approach to set up Sudoku rules, and also include the clues as
constraints. The sudokuEngine file comes with your software.

type sudokuEngine

function [S,eflag] = sudokuEngine(B)
% This function sets up the rules for Sudoku. It reads in the puzzle
% expressed in matrix B, calls intlinprog to solve the puzzle, and returns
% the solution in matrix S.
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%
% The matrix B should have 3 columns and at least 17 rows (because a Sudoku
% puzzle needs at least 17 entries to be uniquely solvable). The first two
% elements in each row are the i,j coordinates of a clue, and the third
% element is the value of the clue, an integer from 1 to 9. If B is a
% 9-by-9 matrix, the function first converts it to 3-column form.

% Copyright 2014 The MathWorks, Inc.

if isequal(size(B),[9,9]) % 9-by-9 clues
% Convert to 81-by-3
[SM,SN] = meshgrid(1:9); % make i,j entries
B = [SN(:),SM(:),B(:)]; % i,j,k rows
% Now delete zero rows
[rrem,~] = find(B(:,3) == 0);
B(rrem,:) = [];

end

if size(B,2) ~= 3 || length(size(B)) > 2
error('The input matrix must be N-by-3 or 9-by-9')

end

if sum([any(B ~= round(B)),any(B < 1),any(B > 9)]) % enforces entries 1-9
error('Entries must be integers from 1 to 9')

end

%% The rules of Sudoku:
N = 9^3; % number of independent variables in x, a 9-by-9-by-9 array
M = 4*9^2; % number of constraints, see the construction of Aeq
Aeq = zeros(M,N); % allocate equality constraint matrix Aeq*x = beq
beq = ones(M,1); % allocate constant vector beq
f = (1:N)'; % the objective can be anything, but having nonconstant f can s
lb = zeros(9,9,9); % an initial zero array
ub = lb+1; % upper bound array to give binary variables

counter = 1;
for j = 1:9 % one in each row

for k = 1:9
Astuff = lb; % clear Astuff
Astuff(1:end,j,k) = 1; % one row in Aeq*x = beq
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Aeq(counter,:) = Astuff(:)'; % put Astuff in a row of Aeq
counter = counter + 1;

end
end

for i = 1:9 % one in each column
for k = 1:9

Astuff = lb;
Astuff(i,1:end,k) = 1;
Aeq(counter,:) = Astuff(:)';
counter = counter + 1;

end
end

for U = 0:3:6 % one in each square
for V = 0:3:6

for k = 1:9
Astuff = lb;
Astuff(U+(1:3),V+(1:3),k) = 1;
Aeq(counter,:) = Astuff(:)';
counter = counter + 1;

end
end

end

for i = 1:9 % one in each depth
for j = 1:9

Astuff = lb;
Astuff(i,j,1:end) = 1;
Aeq(counter,:) = Astuff(:)';
counter = counter + 1;

end
end

%% Put the particular puzzle in the constraints
% Include the initial clues in the |lb| array by setting corresponding
% entries to 1. This forces the solution to have |x(i,j,k) = 1|.

for i = 1:size(B,1)
lb(B(i,1),B(i,2),B(i,3)) = 1;
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end

%% Solve the Puzzle
% The Sudoku problem is complete: the rules are represented in the |Aeq|
% and |beq| matrices, and the clues are ones in the |lb| array. Solve the
% problem by calling |intlinprog|. Ensure that the integer program has all
% binary variables by setting the intcon argument to |1:N|, with lower and
% upper bounds of 0 and 1.

intcon = 1:N;

[x,~,eflag] = intlinprog(f,intcon,[],[],Aeq,beq,lb,ub);

%% Convert the Solution to a Usable Form
% To go from the solution x to a Sudoku grid, simply add up the numbers at
% each $(i,j)$ entry, multiplied by the depth at which the numbers appear:

if eflag > 0 % good solution
x = reshape(x,9,9,9); % change back to a 9-by-9-by-9 array
x = round(x); % clean up non-integer solutions
y = ones(size(x));
for k = 2:9

y(:,:,k) = k; % multiplier for each depth k
end

S = x.*y; % multiply each entry by its depth
S = sum(S,3); % S is 9-by-9 and holds the solved puzzle

else
S = [];

end

Call the Sudoku Solver

S = sudokuEngine(B); % Solves the puzzle pictured at the start
drawSudoku(S)

LP: Optimal objective value is 29565.000000.

Cut Generation: Applied 2 strong CG cuts,
and 1 zero-half cut.
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Lower bound is 29565.000000.
Relative gap is 0.00%.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is within a
tolerance of the optimal value; options.TolGapAbs = 0 (the default value).
intcon variables are integer within tolerance, options.TolInteger = 1e-05 (
default value).

You can easily check that the solution is correct.

Function to Draw the Sudoku Puzzle

type drawSudoku

function drawSudoku(B)
% Function for drawing the Sudoku board

% Copyright 2014 The MathWorks, Inc.

figure;hold on;axis off;axis equal % prepare to draw
rectangle('Position',[0 0 9 9],'LineWidth',3,'Clipping','off') % outside bo
rectangle('Position',[3,0,3,9],'LineWidth',2) % heavy vertical lines
rectangle('Position',[0,3,9,3],'LineWidth',2) % heavy horizontal lines
rectangle('Position',[0,1,9,1],'LineWidth',1) % minor horizontal lines
rectangle('Position',[0,4,9,1],'LineWidth',1)
rectangle('Position',[0,7,9,1],'LineWidth',1)
rectangle('Position',[1,0,1,9],'LineWidth',1) % minor vertical lines
rectangle('Position',[4,0,1,9],'LineWidth',1)
rectangle('Position',[7,0,1,9],'LineWidth',1)

% Fill in the clues
%
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% The rows of B are of the form (i,j,k) where i is the row counting from
% the top, j is the column, and k is the clue. To place the entries in the
% boxes, j is the horizontal distance, 10-i is the vertical distance, and
% we subtract 0.5 to center the clue in the box.
%
% If B is a 9-by-9 matrix, convert it to 3 columns first

if size(B,2) == 9 % 9 columns
[SM,SN] = meshgrid(1:9); % make i,j entries
B = [SN(:),SM(:),B(:)]; % i,j,k rows

end

for ii = 1:size(B,1)
text(B(ii,2)-0.5,9.5-B(ii,1),num2str(B(ii,3)))

end

hold off

end
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Least-Squares (Model Fitting) Algorithms

In this section...

“Least Squares Definition” on page 6-200

“Trust-Region-Reflective Least Squares” on page 6-201

“Levenberg-Marquardt Method” on page 6-205

Least Squares Definition
Least squares, in general, is the problem of finding a vector x that is a local
minimizer to a function that is a sum of squares, possibly subject to some
constraints:

min ( ) min ( )
x x

i
i

F x F x2
2 2= ∑

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub.

There are several Optimization Toolbox solvers available for various types of
F(x) and various types of constraints:

Solver F(x) Constraints

\ C·x – d None

lsqnonneg C·x – d x ≥ 0

lsqlin C·x – d Bound, linear

lsqnonlin General F(x) Bound

lsqcurvefit F(x, xdata) – ydata Bound

There are four least-squares algorithms in Optimization Toolbox solvers, in
addition to the algorithms used in \:

• Trust-region-reflective

• Levenberg-Marquardt

• lsqlin active-set
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• The algorithm used by lsqnonneg

The trust-region reflective algorithm, lsqnonneg algorithm, and
Levenberg-Marquardt algorithm are large-scale; see “Large-Scale vs.
Medium-Scale Algorithms” on page 2-12. The medium-scale lsqlin algorithm
is not large-scale. For a general survey of nonlinear least-squares methods,
see Dennis [8]. Specific details on the Levenberg-Marquardt method can
be found in Moré [28].

Trust-Region-Reflective Least Squares

Trust-Region-Reflective Least Squares Algorithm
Many of the methods used in Optimization Toolbox solvers are based on trust
regions, a simple yet powerful concept in optimization.

To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,

min ( ), .
s

q s s N ∈{ }
(6-99)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.
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In the standard trust-region method ([48]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated

min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-100)

where g is the gradient of f at the current point x, H is the Hessian matrix
(the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ
is a positive scalar, and . is the 2-norm. Good algorithms exist for solving
Equation 6-100 (see [48]); such algorithms typically involve the computation
of a full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.

Such algorithms provide an accurate solution to Equation 6-100. However,
they require time proportional to several factorizations of H. Therefore, for
trust-region problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-100, have been proposed in
the literature ([42] and [50]). The approximation approach followed in
Optimization Toolbox solvers is to restrict the trust-region subproblem to
a two-dimensional subspace S ([39] and [42]). Once the subspace S has
been computed, the work to solve Equation 6-100 is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to
the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver defines
S as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-101)

or a direction of negative curvature,
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s H sT
2 2 0⋅ ⋅ < . (6-102)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-100 to determine the trial step s.

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
trial step is not accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion
of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.

Large Scale Nonlinear Least Squares
An important special case for f(x) is the nonlinear least-squares problem

min ( ) min ( ) ,
x

i
i x

f x F x2
2
2∑ =

(6-103)

where F(x) is a vector-valued function with component i of F(x) equal to fi(x).
The basic method used to solve this problem is the same as in the general
case described in “Trust-Region Methods for Nonlinear Minimization” on
page 6-5. However, the structure of the nonlinear least-squares problem is
exploited to enhance efficiency. In particular, an approximate Gauss-Newton
direction, i.e., a solution s to
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min ,Js F+ 2
2

(6-104)

(where J is the Jacobian of F(x)) is used to help define the two-dimensional
subspace S. Second derivatives of the component function fi(x) are not used.

In each iteration the method of preconditioned conjugate gradients is used
to approximately solve the normal equations, i.e.,

J Js J FT T= − ,

although the normal equations are not explicitly formed.

Large Scale Linear Least Squares
In this case the function f(x) to be solved is

f x Cx d( ) ,= + 2
2

possibly subject to linear constraints. The algorithm generates strictly
feasible iterates converging, in the limit, to a local solution. Each iteration
involves the approximate solution of a large linear system (of order n, where n
is the length of x). The iteration matrices have the structure of the matrix
C. In particular, the method of preconditioned conjugate gradients is used to
approximately solve the normal equations, i.e.,

C Cx C dT T= − ,

although the normal equations are not explicitly formed.

The subspace trust-region method is used to determine a search direction.
However, instead of restricting the step to (possibly) one reflection step,
as in the nonlinear minimization case, a piecewise reflective line search is
conducted at each iteration, as in the quadratic case. See [45] for details of
the line search. Ultimately, the linear systems represent a Newton approach
capturing the first-order optimality conditions at the solution, resulting in
strong local convergence rates.
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Jacobian Multiply Function. lsqlin can solve the linearly-constrained
least-squares problem without using the matrix C explicitly. Instead, it uses a
Jacobian multiply function jmfun,

W = jmfun(Jinfo,Y,flag)

that you provide. The function must calculate the following products for
a matrix Y:

• If flag == 0 then W = C'*(C*Y).

• If flag > 0 then W = C*Y.

• If flag < 0 then W = C'*Y.

This can be useful if C is large, but contains enough structure that you can
write jmfun without forming C explicitly. For an example, see “Jacobian
Multiply Function with Linear Least Squares” on page 6-224.

Levenberg-Marquardt Method
In the least-squares problem a function f(x) is minimized that is a sum of
squares.

min ( ) ( ) ( ).
x

i
i

f x F x F x= = ∑2
2 2

(6-105)

Problems of this type occur in a large number of practical applications,
especially when fitting model functions to data, i.e., nonlinear parameter
estimation. They are also prevalent in control where you want the output,
y(x,t), to follow some continuous model trajectory, φ(t), for vector x and
scalar t. This problem can be expressed as

min ( , ) ( ) ,
x

t

t

n
y x t t dt

∈ℜ
−( )∫ ϕ 2

1

2

(6-106)

where y(x,t) and φ(t) are scalar functions.

When the integral is discretized using a suitable quadrature formula, the
above can be formulated as a least-squares problem:
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min ( ) ( , ) ( ) ,
x

i i
i

m

n
f x y x t t

∈ℜ =
= −( )∑ ϕ 2

1 (6-107)

where y and  include the weights of the quadrature scheme. Note that in
this problem the vector F(x) is

F x

y x t t
y x t t

y x t tm m

( )

( , ) ( )
( , ) ( )

...
( , ) ( )

=

−
−

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

1 1

2 2





⎥⎥
⎥
⎥

.

In problems of this kind, the residual F(x) is likely to be small at the
optimum since it is general practice to set realistically achievable target
trajectories. Although the function in LS can be minimized using a
general unconstrained minimization technique, as described in “Basics of
Unconstrained Optimization” on page 6-8, certain characteristics of the
problem can often be exploited to improve the iterative efficiency of the
solution procedure. The gradient and Hessian matrix of LS have a special
structure.

Denoting the m-by-n Jacobian matrix of F(x) as J(x), the gradient vector of
f(x) as G(x), the Hessian matrix of f(x) as H(x), and the Hessian matrix of
each Fi(x) as Hi(x), you have

G x J x F x

H x J x J x Q x

T

T

( ) ( ) ( )

( ) ( ) ( ) ( ),

=

= +

2

2 2 (6-108)

where

Q x F x H xi i
i

m
( ) ( ) ( ).= ⋅

=
∑

1

The matrix Q(x) has the property that when the residual F(x) tends to zero
as xk approaches the solution, then Q(x) also tends to zero. Thus when F(x)
is small at the solution, a very effective method is to use the Gauss-Newton
direction as a basis for an optimization procedure.
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In the Gauss-Newton method, a search direction, dk, is obtained at each major
iteration, k, that is a solution of the linear least-squares problem:

min ( ) ( ) .
x

k kn
J x F x

∈ℜ
− 2

2

(6-109)

The direction derived from this method is equivalent to the Newton direction
when the terms of Q(x) can be ignored. The search direction dk can be used
as part of a line search strategy to ensure that at each iteration the function
f(x) decreases.

The Gauss-Newton method often encounters problems when the second-order
term Q(x) is significant. A method that overcomes this problem is the
Levenberg-Marquardt method.

The Levenberg-Marquardt [25], and [27] method uses a search direction that
is a solution of the linear set of equations

J x J x I d J x F xk
T

k k k k
T

k( ) ( ) +( ) = − ( ) ( ) ,
(6-110)

or, optionally, of the equations

J x J x diag J x J x d J x F xk
T

k k k
T

k k k
T

k( ) ( ) + ( ) ( )( )( ) = − ( ) ( ) ,
(6-111)

where the scalar λk controls both the magnitude and direction of dk. Set option
ScaleProblem to 'none' to choose Equation 6-110, and set ScaleProblem to
'Jacobian' to choose Equation 6-111.

When λk is zero, the direction dk is identical to that of the Gauss-Newton
method. As λk tends to infinity, dk tends towards the steepest descent
direction, with magnitude tending to zero. This implies that for some
sufficiently large λk, the term F(xk + dk) < F(xk) holds true. The term λk can
therefore be controlled to ensure descent even when second-order terms,
which restrict the efficiency of the Gauss-Newton method, are encountered.

The Levenberg-Marquardt method therefore uses a search direction that
is a cross between the Gauss-Newton direction and the steepest descent
direction. This is illustrated in Figure 6-4, Levenberg-Marquardt Method on
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Rosenbrock’s Function. The solution for Rosenbrock’s function converges after
90 function evaluations compared to 48 for the Gauss-Newton method. The
poorer efficiency is partly because the Gauss-Newton method is generally
more effective when the residual is zero at the solution. However, such
information is not always available beforehand, and the increased robustness
of the Levenberg-Marquardt method compensates for its occasional poorer
efficiency.

Figure 6-4: Levenberg-Marquardt Method on Rosenbrock’s Function

For an animated version of this figure, enter bandem at the MATLAB
command line.
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lsqnonlin with a Simulink Model
Suppose that you want to optimize the control parameters in the Simulink
model optsim.mdl. (This model can be found in the optim/optimdemos
folder. Note that Simulink must be installed on your system to load this
model.) The model includes a nonlinear process plant modeled as a Simulink
block diagram.

Plant with Actuator Saturation

The plant is an under-damped third-order model with actuator limits. The
actuator limits are a saturation limit and a slew rate limit. The actuator
saturation limit cuts off input values greater than 2 units or less than -2
units. The slew rate limit of the actuator is 0.8 units/sec. The closed-loop
response of the system to a step input is shown in Closed-Loop Response on
page 6-210. You can see this response by opening the model (type optsim at
the command line or click the model name), and selecting Start from the
Simulation menu. The response plots to the scope.
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Closed-Loop Response

The problem is to design a feedback control loop that tracks a unit step input
to the system. The closed-loop plant is entered in terms of the blocks where
the plant and actuator have been placed in a hierarchical Subsystem block. A
Scope block displays output trajectories during the design process.

Closed-Loop Model
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One way to solve this problem is to minimize the error between the output
and the input signal. The variables are the parameters of the Proportional
Integral Derivative (PID) controller. If you only need to minimize the error
at one time unit, it would be a single objective function. But the goal is
to minimize the error for all time steps from 0 to 100, thus producing a
multiobjective function (one function for each time step).

The routine lsqnonlin is used to perform a least-squares fit on the tracking
of the output. The tracking is performed via the function tracklsq, which
returns the error signal yout, the output computed by calling sim, minus the
input signal 1. The code for tracklsq is contained in the file runtracklsq.m,
shown below.

The function runtracklsq sets up all the needed values and then calls
lsqnonlin with the objective function tracklsq, which is nested inside
runtracklsq. The variable options passed to lsqnonlin defines the
criteria and display characteristics. In this case you ask for output, use the
medium-scale algorithm, and give termination tolerances for the step and
objective function on the order of 0.001.

To run the simulation in the model optsim, the variables Kp, Ki, Kd, a1, and
a2 (a1 and a2 are variables in the Plant block) must all be defined. Kp, Ki, and
Kd are the variables to be optimized. The function tracklsq is nested inside
runtracklsq so that the variables a1 and a2 are shared between the two
functions. The variables a1 and a2 are initialized in runtracklsq.

The objective function tracklsq runs the simulation. The simulation can
be run either in the base workspace or the current workspace, that is, the
workspace of the function calling sim, which in this case is the workspace of
tracklsq. In this example, the SrcWorkspace option is set to 'Current'
to tell sim to run the simulation in the current workspace. The simulation
is performed to 100 seconds.

When the simulation is completed, the myobj object is created in the current
workspace (that is, the workspace of tracklsq). The Outport block in the
block diagram model puts the yout field of the object into the current
workspace at the end of the simulation.

The following is the code for runtracklsq:
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function [Kp,Ki,Kd] = runtracklsq
% RUNTRACKLSQ demonstrates using LSQNONLIN with Simulink.

optsim % Load the model
pid0 = [0.63 0.0504 1.9688]; % Set initial values
a1 = 3; a2 = 43; % Initialize model plant variables
options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt',...

'Display','off','TolX',0.001,'TolFun',0.001);
pid = lsqnonlin(@tracklsq, pid0, [], [], options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

function F = tracklsq(pid)
% Track the output of optsim to a signal of 1

% Variables a1 and a2 are needed by the model optsim.
% They are shared with RUNTRACKLSQ so do not need to be
% redefined here.
Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

% Set sim options and compute function value
myobj = sim('optsim','SrcWorkspace','Current', ...

'StopTime','100');
F = myobj.get('yout') - 1;

end
end

Copy the code for runtracklsq to a file named runtracklsq.m, placed in a
folder on your MATLAB path.

When you run runtracklsq, the optimization gives the solution for the
proportional, integral, and derivative (Kp, Ki, Kd) gains of the controller:

[Kp, Ki, Kd] = runtracklsq

Done initializing optsim.

Kp =

2.9633
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Ki =

0.1436

Kd =

13.1386

Here is the resulting closed-loop step response.

Closed-Loop Response Using lsqnonlin
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Note The call to sim results in a call to one of the Simulink ordinary
differential equation (ODE) solvers. A choice must be made about the type of
solver to use. From the optimization point of view, a fixed-step solver is the
best choice if that is sufficient to solve the ODE. However, in the case of a stiff
system, a variable-step method might be required to solve the ODE.

The numerical solution produced by a variable-step solver, however, is not a
smooth function of parameters, because of step-size control mechanisms. This
lack of smoothness can prevent the optimization routine from converging. The
lack of smoothness is not introduced when a fixed-step solver is used. (For a
further explanation, see [53].)

Simulink Design Optimization software is recommended for solving
multiobjective optimization problems in conjunction with Simulink
variable-step solvers. It provides a special numeric gradient computation that
works with Simulink and avoids introducing a problem of lack of smoothness.
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Nonlinear Least Squares With and Without Jacobian

In this section...

“Jacobians and Memory in Nonlinear Least Squares” on page 6-215

“Step 1: Write a file myfun.m that computes the objective function values.”
on page 6-216

“Step 2: Call the nonlinear least-squares routine.” on page 6-216

“Step 3: Include a Jacobian.” on page 6-217

Jacobians and Memory in Nonlinear Least Squares
You can use the trust-region reflective algorithm in lsqnonlin, lsqcurvefit,
and fsolve with small- to medium-scale problems without computing the
Jacobian in fun or providing the Jacobian sparsity pattern. (This example
also applies when using fmincon or fminunc without computing the
Hessian or supplying the Hessian sparsity pattern.) How small is small- to
medium-scale? No absolute answer is available, as it depends on the amount
of virtual memory in your computer system configuration.

Suppose your problem has m equations and n unknowns. If the command
J = sparse(ones(m,n)) causes an Out of memory error on your machine,
then this is certainly too large a problem. If it does not result in an error, the
problem might still be too large. You can only find out by running it and
seeing if MATLAB runs within the amount of virtual memory available on
your system.

Suppose you have a small problem with 10 equations and 2 unknowns, such
as finding x that minimizes

2 2 1 2
2

1

10
+ − −( )

=
∑ k e ekx kx

k

,

starting at the point x = [0.3,0.4].
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Because lsqnonlin assumes that the sum of squares is not explicitly formed
in the user function, the function passed to lsqnonlin should instead compute
the vector valued function

F x k e ek
kx kx( ) ,= + − −2 2 1 2

for k = 1 to 10 (that is, F should have 10 components).

Step 1: Write a file myfun.m that computes the
objective function values.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Step 2: Call the nonlinear least-squares routine.

x0 = [0.3 0.4]; % Starting guess
[x,resnorm,res,eflag,output1] = lsqnonlin(@myfun,x0);
% Invoke optimizer

Because the Jacobian is not computed in myfun.m, and no Jacobian sparsity
pattern is provided by the JacobPattern option in options, lsqnonlin
calls the trust-region reflective algorithm with JacobPattern set to
Jstr = sparse(ones(10,2)). This is the default for lsqnonlin. Note that
the Jacobian option in options is set to 'off' by default.

When the finite-differencing routine is called initially, it detects that Jstr
is actually a dense matrix, i.e., no speed benefit is derived from storing it as
a sparse matrix. From then on, the finite-differencing routine uses Jstr =
ones(10,2) (a full matrix) for the optimization computations.

After about 24 function evaluations, this example gives the solution

x,resnorm

x =
0.2578 0.2578
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resnorm =
124.3622

Most computer systems can handle much larger full problems, say into the
hundreds of equations and variables. But if there is some sparsity structure
in the Jacobian (or Hessian) that can be taken advantage of, the large-scale
methods always runs faster if this information is provided.

Step 3: Include a Jacobian.
The objective function is simple enough to calculate its Jacobian. Following
the definition in “Jacobians of Vector Functions” on page 2-27, a Jacobian
function represents the matrix

J x
F x

xkj
k

j
( )

( )
.




Here, Fk(x is the kth component of the objective function. This example has

F x k e ek
kx kx( ) ,= + − −2 2 1 2

so

J x ke

J x ke

k
kx

k
kx

1

2

1

2

( )

( ) .

 

 

Modify the objective function file.

function [F,J] = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));
if nargout > 1

J = zeros(10,2);
J(k,1) = -k.*exp(k*x(1));
J(k,2) = -k.*exp(k*x(2));

end

Set options so the solver uses the Jacobian.
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opts = optimoptions(@lsqnonlin,'Jacobian','on');

Run the solver.

x0 = [0.3 0.4]; % Starting guess
[x,resnorm,res,eflag,output2] = lsqnonlin(@myfun,x0,[],[],opts);

The solution is the same as before.

x,resnorm

x =
0.2578 0.2578

resnorm =
124.3622

The advantage to using a Jacobian is that the solver takes fewer function
evaluations, 24 instead of 72.

[output1.funcCount,output2.funcCount]

ans =
72 24
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Linear Least Squares with Bound Constraints
Many situations give rise to sparse linear least-squares problems, often with
bounds on the variables. The next problem requires that the variables be
nonnegative. This problem comes from fitting a function approximation to a
piecewise linear spline. Specifically, particles are scattered on the unit square.
The function to be approximated is evaluated at these points, and a piecewise
linear spline approximation is constructed under the condition that (linear)
coefficients are not negative. There are 2000 equations to fit on 400 variables:

load particle % Get C, d
lb = zeros(400,1);
[x,resnorm,residual,exitflag,output] = ...

lsqlin(C,d,[],[],[],[],lb);

The default diagonal preconditioning works fairly well:

exitflag,resnorm,output

exitflag =
3

resnorm =
22.5794

output =
iterations: 10
algorithm: 'large-scale: trust-region reflective Newton'

firstorderopt: 2.7870e-005
cgiterations: 42

message: 'Optimization terminated: relative function value changi
than sqr...'

For bound constrained problems, the first-order optimality is the infinity
norm of v.*g, where v is defined as in “Box Constraints” on page 6-30, and g
is the gradient.

You can improve (decrease) the first-order optimality measure by using a
sparse QR factorization in each iteration. To do this, set PrecondBandWidth
to inf:
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options = optimoptions('lsqlin','PrecondBandWidth',inf);
[x,resnorm,residual,exitflag,output] = ...

lsqlin(C,d,[],[],[],[],lb,[],[],options);

The first-order optimality measure decreases:

exitflag,resnorm,output

exitflag =
1

resnorm =
22.5794

output =
iterations: 12
algorithm: 'large-scale: trust-region reflective Newton'

firstorderopt: 5.5907e-015
cgiterations: 0

message: 'Optimization terminated: first order optimality with op
gradient n...'
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Optimization App with the lsqlin Solver

In this section...

“The Problem” on page 6-221

“Setting Up the Problem” on page 6-221

The Problem
This example shows how to use the Optimization app to solve a constrained
least-squares problem.

The problem in this example is to find the point on the plane x1 + 2x2 + 4x3 = 7
that is closest to the origin. The easiest way to solve this problem is to
minimize the square of the distance from a point x = (x1,x2,x3) on the plane to
the origin, which returns the same optimal point as minimizing the actual
distance. Since the square of the distance from an arbitrary point (x1,x2,x3) to

the origin is x x x1
2

2
2

3
2+ + , you can describe the problem as follows:

min ( ) ,
x

f x x x x= + +1
2

2
2

3
2

subject to the constraint

x1 + 2x2 + 4x3 = 7.

The function f(x) is called the objective function and x1 + 2x2 + 4x3 = 7 is an
equality constraint. More complicated problems might contain other equality
constraints, inequality constraints, and upper or lower bound constraints.

Setting Up the Problem
This section shows how to set up the problem with the lsqlin solver in the
Optimization app.

1 Enter optimtool in the Command Window to open the Optimization app.

2 Select lsqlin from the selection of solvers. Use the default algorithm.
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3 Enter the following to create variables for the objective function:

• In the C field, enter eye(3).

• In the d field, enter zeros(3,1).

The C and d fields should appear as shown in the following figure.

4 Enter the following to create variables for the equality constraints:

• In the Aeq field, enter [1 2 4].

• In the beq field, enter 7.

The Aeq and beq fields should appear as shown in the following figure.

5 Click the Start button as shown in the following figure.
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6 When the algorithm terminates, under Run solver and view results the
following information is displayed:

• The Current iteration value when the algorithm terminated, which
for this example is 1.

• The final value of the objective function when the algorithm terminated:

Objective function value: 2.333333333333333

• The algorithm termination message:

Optimization terminated.

• The final point, which for this example is

0.3333
0.6667
1.3333
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Jacobian Multiply Function with Linear Least Squares
You can solve a least-squares problem of the form

min
x

C x d
1
2 2

2⋅ −

such that A·x ≤ b, Aeq·x = beq, lb ≤ x ≤ ub, for problems where C is very
large, perhaps too large to be stored, by using a Jacobian multiply function.

For example, consider the case where C is a 2n-by-n matrix based on a
circulant matrix. This means the rows of C are shifts of a row vector v. This
example has the row vector v with elements of the form (–1)k+1/k:

v = [1, –1/2, 1/3, –1/4, ... , –1/n],

cyclically shifted:

C

n
n n

n n n

=

− −
− − −
− − − −

1 1 2 1 3 1
1 1 1 2 1 1

1 1 1 1 1 2

/ / ... /
/ / ... /( )

/( ) / ... /( ))

/ / / ...
/ / ... /

/ / ... /( )
/

    

− −
− −

− − −

1 2 1 3 1 4 1
1 1 2 1 3 1

1 1 1 2 1 1
1

n
n n

(( ) / ... /( )

/ / / ...

n n n− − − −

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

1 1 1 1 2

1 2 1 3 1 4 1
    

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

This least-squares example considers the problem where

d = [n – 1; n – 2; ...; –n],

and the constraints are –5 ≤ x(i) ≤ 5 for i = 1, ..., n.
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For large enough n, the dense matrix C does not fit into computer memory.
(n = 10,000 is too large on one tested system.)

A Jacobian multiply function has the following syntax:

w = jmfcn(Jinfo,Y,flag)

Jinfo is a matrix the same size as C, used as a preconditioner. If C is too
large to fit into memory, Jinfo should be sparse. Y is a vector or matrix sized
so that C*Y or C'*Y makes sense. flag tells jmfcn which product to form:

• flag > 0  w = C*Y

• flag < 0  w = C'*Y

• flag = 0  w = C'*C*Y

Since C is such a simply structured matrix, it is easy to write a Jacobian
multiply function in terms of the vector v; i.e., without forming C. Each row
of C*Y is the product of a shifted version of v times Y. The following matrix
performs one step of the shift: v shifts to v*T, where

T =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

0 1 0 0
0 0 1 0

0 0 0 1
1 0 0 0

...

...

...

...

.    

To compute C*Y, compute v*Y to find the first row, then shift v and compute
the second row, and so on.

To compute C'*Y, perform the same computation, but use a shifted version of
temp, the vector formed from the first row of C':

temp = [fliplr(v)*T,fliplr(v)*T];

To compute C'*C*Y, simply compute C*Y using shifts of v, and then compute
C' times the result using shifts of fliplr(v).
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The dolsqJac function in the following code sets up the vector v and matrix T,
and calls the solver lsqlin:

function [x,resnorm,residual,exitflag,output] = dolsqJac(n)
%
r = 1:n-1; % index for making vectors

T = spalloc(n,n,n); % making a sparse circulant matrix
for m = r

T(m,m+1)=1;
end
T(n,1) = 1;

v(n) = (-1)^(n+1)/n; % allocating the vector v
v(r) =( -1).^(r+1)./r;

% Now C should be a 2n-by-n circulant matrix based on v,
% but that might be too large to fit into memory.

r = 1:2*n;
d(r) = n-r;

Jinfo = [speye(n);speye(n)]; % sparse matrix for preconditioning
% This matrix is a required input for the solver;
% preconditioning is not really being used in this example

% Pass the matrix T and vector v so they don't need to be
% computed in the Jacobian multiply function
options = optimoptions('lsqlin','JacobMult',...

@(Jinfo,Y,flag)lsqcirculant(Jinfo,Y,flag,T,v));

lb = -5*ones(1,n);
ub = 5*ones(1,n);

[x,resnorm,residual,exitflag,output] = ...
lsqlin(Jinfo,d,[],[],[],[],lb,ub,[],options);

The Jacobian multiply function lsqcirculant is as follows:

function w = lsqcirculant(Jinfo,Y,flag,T,v)
% This function computes the Jacobian multiply functions
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% for a 2n-by-n circulant matrix example

if flag > 0
w = Jpositive(Y);

elseif flag < 0
w = Jnegative(Y);

else
w = Jnegative(Jpositive(Y));

end

function a = Jpositive(q)
% Calculate C*q
temp = v;

a = zeros(size(q)); % allocating the matrix a
a = [a;a]; % the result is twice as tall as the input

for r = 1:size(a,1)
a(r,:) = temp*q; % compute the rth row
temp = temp*T; % shift the circulant

end
end

function a = Jnegative(q)
% Calculate C'*q
temp = fliplr(v)*T; % the circulant for C'

len = size(q,1)/2; % the returned vector is half as long
% as the input vector
a = zeros(len,size(q,2)); % allocating the matrix a

for r = 1:len
a(r,:) = [temp,temp]*q; % compute the rth row
temp = temp*T; % shift the circulant

end
end

end
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When n = 3000, C is an 18,000,000-element dense matrix. Here are the results
of the dolsqJac function for n = 3000 at selected values of x, and the output
structure:

[x,resnorm,residual,exitflag,output] = dolsqJac(3000);

Optimization terminated: relative function value changing by
less than OPTIONS.TolFun.

x(1)
ans =

5.0000

x(1500)
ans =

-0.5201

x(3000)
ans =

-5.0000

output
output =

iterations: 16
algorithm: 'large-scale: trust-region reflective Newton'

firstorderopt: 7.5143e-05
cgiterations: 36

message: 'Optimization terminated: relative function value changi
than OPT...'
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Nonlinear Curve Fitting with lsqcurvefit
lsqcurvefit enables you to fit parameterized nonlinear functions to data
easily. You can use lsqnonlin as well; lsqcurvefit is simply a convenient
way to call lsqnonlin for curve fitting.

In this example, the vector xdata represents 100 data points, and the vector
ydata represents the associated measurements. Generate the data using the
following script:

rng(5489,'twister') % reproducible
xdata = -2*log(rand(100,1));
ydata = (ones(100,1) + .1*randn(100,1)) + (3*ones(100,1)+...

0.5*randn(100,1)).*exp((-(2*ones(100,1)+...
.5*randn(100,1))).*xdata);

The modeled relationship between xdata and ydata is

ydata a a a xdatai i i= + − +1 2 3exp( ) . (6-112)

The script generates xdata from 100 independent samples from an
exponential distribution with mean 2. It generates ydata from Equation
6-112 using a = [1;3;2], perturbed by adding normal deviates with standard
deviations [0.1;0.5;0.5].

The goal is to find parameters âi , i = 1, 2, 3, for the model that best fit the
data.

In order to fit the parameters to the data using lsqcurvefit, you need
to define a fitting function. Define the fitting function predicted as an
anonymous function:

predicted = @(a,xdata) a(1)*ones(100,1)+a(2)*exp(-a(3)*xdata);

To fit the model to the data, lsqcurvefit needs an initial estimate a0 of
the parameters. Enter

a0 = [2;2;2];

Run the solver lsqcurvefit as follows:
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[ahat,resnorm,residual,exitflag,output,lambda,jacobian] =...
lsqcurvefit(predicted,a0,xdata,ydata);

Local minimum possible.

lsqcurvefit stopped because the final change in the
sum of squares relative to its initial value is
less than the default value of the function tolerance.

To see the resulting least-squares estimate of â , enter:

ahat

ahat =
1.0169
3.1444
2.1596

The fitted values ahat are within 8% of a = [1;3;2].

If you have Statistics Toolbox™ software, use the nlparci function to
generate confidence intervals for the ahat estimate.
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Fit a Model to Complex-Valued Data
This example shows how to perform nonlinear fitting of complex-valued
data. While most Optimization Toolbox solvers and algorithms operate only
on real-valued data, the levenberg-marquardt algorithm works on both
real-valued and complex-valued data.

Do not set the FunValCheck option to 'on' when using complex data. The
solver errors.

Data Model

The data model is a simple exponential:

y x v v ev x( ) . 1 2
3

The x is input data, y is the response, and v is a complex-valued vector of
coefficients. The goal is to estimate v from x and noisy observations y.

Artificial Data with Noise

Generate artificial data for the model. Take the complex coefficient vector v
as [2;3+4i;-.5+.4i]. Take the observations x as exponentially distributed.
Add complex-valued noise to the responses y.

rng default % for reproducibility
N = 100; % number of observations
v0 = [2;3+4i;-.5+.4i]; % coefficient vector
xdata = -log(rand(N,1)); % exponentially distributed
noisedata = randn(N,1).*exp((1i*randn(N,1))); % complex noise
cplxydata = v0(1) + v0(2).*exp(v0(3)*xdata) + noisedata;

Fit the Model to Recover the Coefficient Vector

The difference between the response predicted by the data model and an
observation (xdata for x and response cplxydata for y) is:

objfcn = @(v)v(1)+v(2)*exp(v(3)*xdata) - cplxydata;
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Use either lsqnonlin or lsqcurvefit to fit the model to the data. This
example first uses lsqnonlin. Because the data is complex, set the Algorithm
option to 'levenberg-marquardt'.

opts = optimoptions(@lsqnonlin,...
'Algorithm','levenberg-marquardt','Display','off');

x0 = (1+1i)*[1;1;1]; % arbitrary initial guess
[vestimated,resnorm,residuals,exitflag,output] = lsqnonlin(objfcn,x0,[],[],
vestimated,resnorm,exitflag,output.firstorderopt

vestimated =

2.1581 + 0.1351i
2.7399 + 3.8012i

-0.5338 + 0.4660i

resnorm =

100.9933

exitflag =

3

ans =

0.0013

lsqnonlin recovers the complex coefficient vector to about one significant
digit. The norm of the residual is sizable, indicating that the noise keeps the
model from fitting all the observations. The exit flag is 3, not the preferable 1,
because the first-order optimality measure is about 1e-3, not below 1e-6.

Alternative: Use lsqcurvefit

To fit using lsqcurvefit, write the model to give just the responses, not the
responses minus the response data.
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objfcn = @(v,xdata)v(1)+v(2)*exp(v(3)*xdata);

Use lsqcurvefit options and syntax.

opts = optimoptions(@lsqcurvefit,opts); % reuse the options
[vestimated,resnorm] = lsqcurvefit(objfcn,x0,xdata,cplxydata,[],[],opts)

vestimated =

2.1581 + 0.1351i
2.7399 + 3.8012i

-0.5338 + 0.4660i

resnorm =

100.9933

The results match those from lsqnonlin, because the underlying algorithms
are identical. Use whichever solver you find more convenient.

Alternative: Split Real and Imaginary Parts

To use the trust-region-reflective algorithm, such as when you want to
include bounds, you must split the real and complex parts of the coefficients
into separate variables. For this problem, split the coefficients as follows:

y v iv v iv v iv x

v v v x v x v

     
  

1 2 3 4 5 6

1 3 5 6 4

( )exp ( )

exp( )cos( ) expp( )sin( )

exp( )cos( ) exp( )sin(

v x v x

i v v v x v x v v x v x
5 6

2 4 5 6 3 5 6

 
   )) . 

Write the response function for lsqcurvefit.

function yout = cplxreal(v,xdata)

yout = zeros(length(xdata),2); % allocate yout
expcoef = exp(v(5)*xdata(:)); % magnitude
coscoef = cos(v(6)*xdata(:)); % real cosine term
sincoef = sin(v(6)*xdata(:)); % imaginary sin term
yout(:,1) = v(1) + expcoef.*(v(3)*coscoef - v(4)*sincoef);
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yout(:,2) = v(2) + expcoef.*(v(4)*coscoef + v(3)*sincoef);

Save this code as the file cplxreal.m on your MATLAB path.

Split the response data into its real and imaginary parts.

ydata2 = [real(cplxydata),imag(cplxydata)];

The coefficient vector v now has six dimensions. Initialize it as all ones, and
solve the problem using lsqcurvefit.

x0 = ones(6,1);
[vestimated,resnorm,residuals,exitflag,output] = ...

lsqcurvefit(@cplxreal,x0,xdata,ydata2);
vestimated,resnorm,exitflag,output.firstorderopt

vestimated =

2.1582
0.1351
2.7399
3.8012

-0.5338
0.4660

resnorm =

100.9933

exitflag =

3

ans =

0.0018
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Interpret the six-element vector vestimated as a three-element complex
vector, and you see that the solution is virtually the same as the previous
solutions.
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Multiobjective Optimization Algorithms

In this section...

“Multiobjective Optimization Definition” on page 6-236

“Algorithms” on page 6-237

Multiobjective Optimization Definition
There are two Optimization Toolbox multiobjective solvers: fgoalattain
and fminimax.

• fgoalattain addresses the problem of reducing a set of nonlinear functions
Fi(x) below a set of goals F*i. Since there are several functions Fi(x), it is
not always clear what it means to solve this problem, especially when you
cannot achieve all the goals simultaneously. Therefore, the problem is
reformulated to one that is always well-defined.

The unscaled goal attainment problem is to minimize the maximum of
Fi(x) – F*i.

There is a useful generalization of the unscaled problem. Given a set of
positive weights wi, the goal attainment problem tries to find x to minimize
the maximum of

F x F
w

i i

i

( )
.

*−
(6-113)

This minimization is supposed to be accomplished while satisfying all types
of constraints: c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

If you set all weights equal to 1 (or any other positive constant), the
goal attainment problem is the same as the unscaled goal attainment
problem. If the F*i are positive, and you set all weights as wi = F*i, the goal
attainment problem becomes minimizing the relative difference between
the functions Fi(x) and the goals F*i.

In other words, the goal attainment problem is to minimize a slack variable
γ, defined as the maximum over i of the expressions in Equation 6-113.
This implies the expression that is the formal statement of the goal
attainment problem:
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min
,x γ
γ

such that F(x) – w·γ ≤ F*, c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq,
and l ≤ x ≤ u.

• fminimax addresses the problem of minimizing the maximum of a set of
nonlinear functions, subject to all types of constraints:

min max ( )
x i

iF x

such that c(x) ≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, and l ≤ x ≤ u.

Clearly, this problem is a special case of the unscaled goal attainment
problem, with F*i = 0 and wi = 1.

Algorithms

Goal Attainment Method
This section describes the goal attainment method of Gembicki [16]. This

method uses a set of design goals, F F F Fm
* * * *, ,...,= { }1 2 , associated with

a set of objectives, F(x) = {F1(x),F2(x),...,Fm(x)}. The problem formulation
allows the objectives to be under- or overachieved, enabling the designer to
be relatively imprecise about the initial design goals. The relative degree of
under- or overachievement of the goals is controlled by a vector of weighting
coefficients, w = {w1,w2,...,wm}, and is expressed as a standard optimization
problem using the formulation

minimize
 


∈ℜ ∈, x Ω (6-114)

such that F x w F i mi i i( ) , ,..., .*− ≤ =   1

The term wiγ introduces an element of slackness into the problem, which
otherwise imposes that the goals be rigidly met. The weighting vector, w,
enables the designer to express a measure of the relative tradeoffs between
the objectives. For instance, setting the weighting vector w equal to the
initial goals indicates that the same percentage under- or overachievement
of the goals, F*, is achieved. You can incorporate hard constraints into the
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design by setting a particular weighting factor to zero (i.e., wi = 0). The goal
attainment method provides a convenient intuitive interpretation of the
design problem, which is solvable using standard optimization procedures.
Illustrative examples of the use of the goal attainment method in control
system design can be found in Fleming ([10] and [11]).

The goal attainment method is represented geometrically in the figure below
in two dimensions.

Figure 6-5: Geometrical Representation of the Goal Attainment Method

Specification of the goals, F F1 2
* *,{ } , defines the goal point, P. The weighting

vector defines the direction of search from P to the feasible function space,
Λ(γ). During the optimization γ is varied, which changes the size of the
feasible region. The constraint boundaries converge to the unique solution
point F1s, F2s.

Algorithm Improvements for the Goal Attainment Method
The goal attainment method has the advantage that it can be posed as a
nonlinear programming problem. Characteristics of the problem can also be
exploited in a nonlinear programming algorithm. In sequential quadratic
programming (SQP), the choice of merit function for the line search is not
easy because, in many cases, it is difficult to “define” the relative importance
between improving the objective function and reducing constraint violations.
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This has resulted in a number of different schemes for constructing the
merit function (see, for example, Schittkowski [36]). In goal attainment
programming there might be a more appropriate merit function, which you
can achieve by posing Equation 6-114 as the minimax problem

minimize  
x i

in∈ℜ
{ }max ,Λ

(6-115)

where

Λi
i i

i

F x F
w

i m=
−

=
( )

, ,..., .
*

  1

Following the argument of Brayton et al. [2] for minimax optimization using
SQP, using the merit function of Equation 6-47 for the goal attainment
problem of Equation 6-115 gives

   ( , ) max , ( ) .*x r F x w Fi i i i
i

m
= + ⋅ − −{ }

=
∑ 0

1 (6-116)

When the merit function of Equation 6-116 is used as the basis of a line search
procedure, then, although ψ(x,γ) might decrease for a step in a given search
direction, the function max Λi might paradoxically increase. This is accepting
a degradation in the worst case objective. Since the worst case objective is
responsible for the value of the objective function γ, this is accepting a step
that ultimately increases the objective function to be minimized. Conversely,
ψ(x,γ) might increase when max Λi decreases, implying a rejection of a step
that improves the worst case objective.

Following the lines of Brayton et al. [2], a solution is therefore to set ψ(x)
equal to the worst case objective, i.e.,

 ( ) max .x
i

i= Λ
(6-117)

A problem in the goal attainment method is that it is common to use a
weighting coefficient equal to 0 to incorporate hard constraints. The merit
function of Equation 6-117 then becomes infinite for arbitrary violations of
the constraints.
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To overcome this problem while still retaining the features of Equation
6-117, the merit function is combined with that of Equation 6-48, giving the
following:




( )
max , ( )

max , ,...,

*

x
r F x w F w

i m

i i i i i

i
i

=
⋅ − −{ } =

=

0 0

1

if 

 otherwΛ iise.

⎧
⎨
⎪

⎩⎪=
∑
i

m

1 (6-118)

Another feature that can be exploited in SQP is the objective function γ. From
the KKT equations it can be shown that the approximation to the Hessian
of the Lagrangian, H, should have zeros in the rows and columns associated
with the variable γ. However, this property does not appear if H is initialized
as the identity matrix. H is therefore initialized and maintained to have zeros
in the rows and columns associated with γ.

These changes make the Hessian, H, indefinite. Therefore H is set to have
zeros in the rows and columns associated with γ, except for the diagonal
element, which is set to a small positive number (e.g., 1e-10). This allows use
of the fast converging positive definite QP method described in “Quadratic
Programming Solution” on page 6-37.

The preceding modifications have been implemented in fgoalattain and
have been found to make the method more robust. However, because of
the rapid convergence of the SQP method, the requirement that the merit
function strictly decrease sometimes requires more function evaluations than
an implementation of SQP using the merit function of Equation 6-47.

Minimizing the Maximum Objective
fminimax uses a goal attainment method. It takes goals of 0, and weights of 1.
With this formulation, the goal attainment problem becomes

min max
( )

minmax ( ),
i x

i i

i i x
i

f x goal
weight

f x
−⎛

⎝
⎜

⎞

⎠
⎟ =

which is the minimax problem.

Parenthetically, you might expect fminimax to turn the multiobjective
function into a single objective. The function
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f(x) = max(F1(x),...Fj(x))

is a single objective function to minimize. However, it is not differentiable,
and Optimization Toolbox objectives are required to be smooth. Therefore the
minimax problem is formulated as a smooth goal attainment problem.
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Using fminimax with a Simulink Model
Another approach to optimizing the control parameters in the Simulink model
shown in Plant with Actuator Saturation on page 6-209 is to use the fminimax
function. In this case, rather than minimizing the error between the output
and the input signal, you minimize the maximum value of the output at any
time t between 0 and 100.

The code for this example, shown below, is contained in the function
runtrackmm, in which the objective function is simply the output yout
returned by the sim command. But minimizing the maximum output at all
time steps might force the output to be far below unity for some time steps.
To keep the output above 0.95 after the first 20 seconds, the constraint
function trackmmcon contains the constraint yout >= 0.95 from t=20 to
t=100. Because constraints must be in the form g 0, the constraint in the
function is g = -yout(20:100)+.95.

Both trackmmobj and trackmmcon use the result yout from sim, calculated
from the current PID values. To avoid calling the simulation twice,
runtrackmm has nested functions so that the value of yout is shared between
the objective and constraint functions. The simulation is called only when
the current point changes.

The following is the code for runtrackmm:

function [Kp, Ki, Kd] = runtrackmm

optsim % initialize Simulink(R)
pid0 = [0.63 0.0504 1.9688];
% a1, a2, yout are shared with TRACKMMOBJ and TRACKMMCON
a1 = 3; a2 = 43; % Initialize plant variables in model
yout = []; % Give yout an initial value
pold = []; % tracks last pid
options = optimoptions('fminimax','Display','iter',...

'TolX',0.001,'TolFun',0.001);
pid = fminimax(@trackmmobj,pid0,[],[],[],[],[],[],...

@trackmmcon,options);
Kp = pid(1); Ki = pid(2); Kd = pid(3);

function F = trackmmobj(pid)
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% Track the output of optsim to a signal of 1.
% Variables a1 and a2 are shared with RUNTRACKMM.
% Variable yout is shared with RUNTRACKMM and
% RUNTRACKMMCON.
updateIfNeeded(pid)

F = yout;
end

function [c,ceq] = trackmmcon(pid)
% Track the output of optsim to a signal of 1.
% Variable yout is shared with RUNTRACKMM and
% TRACKMMOBJ
updateIfNeeded(pid)

c = -yout(20:100)+.95;
ceq=[];

end

function updateIfNeeded(pid)
if ~isequal(pid,pold) % compute only if needed

Kp = pid(1);
Ki = pid(2);
Kd = pid(3);

myobj = sim('optsim','SrcWorkspace','Current');
yout = myobj.get('yout');

pold = pid;
end

end

end

Copy the code for runtrackmm to a file named runtrackmm.m, placed in a
folder on your MATLAB path.

When you run the code, it returns the following results:
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[Kp,Ki,Kd] = runtrackmm

Done initializing optsim.

Objective Max Line search Directional

Iter F-count value constraint steplength derivative Procedure

0 5 0 1.11982

1 11 1.184 0.07978 1 0.482

2 17 1.012 0.04285 1 -0.236

3 23 0.9996 0.00397 1 -0.0195 Hessian modified twice

4 29 0.9996 3.464e-005 1 0.000687 Hessian modified

5 35 0.9996 2.272e-009 1 -0.0175 Hessian modified twice

Local minimum possible. Constraints satisfied.

fminimax stopped because the size of the current search direction is less than

twice the selected value of the step size tolerance and constraints are

satisfied to within the default value of the constraint tolerance.

Kp =

0.5894

Ki =

0.0605

Kd =

5.5295

The last value in the Objective value column of the output shows that the
maximum value for all the time steps is 0.9997. The closed loop response
with this result is shown in the figure Closed-Loop Response Using fminimax
on page 6-245.

This solution differs from the solution obtained in “lsqnonlin with a Simulink
Model” on page 6-209 because you are solving different problem formulations.
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Closed-Loop Response Using fminimax

6-245



6 Optimization Algorithms and Examples

Signal Processing Using fgoalattain

Consider designing a linear-phase Finite Impulse Response (FIR) filter. The
problem is to design a lowpass filter with magnitude one at all frequencies
between 0 and 0.1 Hz and magnitude zero between 0.15 and 0.5 Hz.

The frequency response H(f) for such a filter is defined by

H f h n e

A f e

A f a n fn

j fn

n
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π

π

π
11
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(6-119)

where A(f) is the magnitude of the frequency response. One solution is to apply
a goal attainment method to the magnitude of the frequency response. Given a
function that computes the magnitude, fgoalattain will attempt to vary the
magnitude coefficients a(n) until the magnitude response matches the desired
response within some tolerance. The function that computes the magnitude
response is given in filtmin.m. This function uses a, the magnitude function
coefficients, and w, the discretization of the frequency domain of interest.

To set up a goal attainment problem, you must specify the goal and weights
for the problem. For frequencies between 0 and 0.1, the goal is one. For
frequencies between 0.15 and 0.5, the goal is zero. Frequencies between 0.1
and 0.15 are not specified, so no goals or weights are needed in this range.

This information is stored in the variable goal passed to fgoalattain.
The length of goal is the same as the length returned by the function
filtmin. So that the goals are equally satisfied, usually weight would be
set to abs(goal). However, since some of the goals are zero, the effect
of using weight=abs(goal) will force the objectives with weight 0 to be
satisfied as hard constraints, and the objectives with weight 1 possibly to be
underattained (see “Goal Attainment Method” on page 6-237). Because all the
goals are close in magnitude, using a weight of unity for all goals will give
them equal priority. (Using abs(goal) for the weights is more important
when the magnitude of goal differs more significantly.) Also, setting
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options = optimoptions('fgoalattain','GoalsExactAchieve',length(goal));

specifies that each objective should be as near as possible to its goal value
(neither greater nor less than).

Step 1: Write a file filtmin.m

function y = filtmin(a,w)
n = length(a);
y = cos(w'*(0:n-1)*2*pi)*a ;

Step 2: Invoke optimization routine

% Plot with initial coefficients
a0 = ones(15,1);
incr = 50;
w = linspace(0,0.5,incr);

y0 = filtmin(a0,w);
clf, plot(w,y0,'-.b');
drawnow;

% Set up the goal attainment problem
w1 = linspace(0,0.1,incr) ;
w2 = linspace(0.15,0.5,incr);
w0 = [w1 w2];
goal = [1.0*ones(1,length(w1)) zeros(1,length(w2))];
weight = ones(size(goal));

% Call fgoalattain
options = optimoptions('fgoalattain','GoalsExactAchieve',length(goal));
[a,fval,attainfactor,exitflag]=fgoalattain(@(x)filtmin(x,w0),...

a0,goal,weight,[],[],[],[],[],[],[],options);

% Plot with the optimized (final) coefficients
y = filtmin(a,w);
hold on, plot(w,y,'r')
axis([0 0.5 -3 3])
xlabel('Frequency (Hz)')
ylabel('Magnitude Response (dB)')
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legend('initial', 'final')
grid on

Compare the magnitude response computed with the initial coefficients and
the final coefficients (Magnitude Response with Initial and Final Magnitude
Coefficients on page 6-248). Note that you could use the firpm function in
Signal Processing Toolbox™ software to design this filter.

Magnitude Response with Initial and Final Magnitude Coefficients
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Equation Solving Algorithms

In this section...

“Equation Solving Definition” on page 6-249

“Trust-Region Reflective fsolve Algorithm” on page 6-249

“Trust-Region Dogleg Method” on page 6-252

“Levenberg-Marquardt Method” on page 6-255

“\ Algorithm” on page 6-255

“fzero Algorithm” on page 6-255

Equation Solving Definition
Given a set of n nonlinear functions Fi(x), where n is the number of
components of the vector x, the goal of equation solving is to find a vector x
that makes all Fi(x) = 0.

fsolve attempts to solve systems of equations by minimizing the sum of
squares of the components. If the sum of squares is zero, the system of
equation is solved. fsolve has three algorithms:

• Trust-region-reflective

• Trust-region dogleg

• Levenberg-Marquardt

All algorithms are large-scale; see “Large-Scale vs. Medium-Scale Algorithms”
on page 2-12.

The fzero function solves a single one-dimensional equation.

The \ function solves systems of linear equations.

Trust-Region Reflective fsolve Algorithm
Many of the methods used in Optimization Toolbox solvers are based on trust
regions, a simple yet powerful concept in optimization.
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To understand the trust-region approach to optimization, consider the
unconstrained minimization problem, minimize f(x), where the function takes
vector arguments and returns scalars. Suppose you are at a point x in n-space
and you want to improve, i.e., move to a point with a lower function value.
The basic idea is to approximate f with a simpler function q, which reasonably
reflects the behavior of function f in a neighborhood N around the point x. This
neighborhood is the trust region. A trial step s is computed by minimizing (or
approximately minimizing) over N. This is the trust-region subproblem,

min ( ), .
s

q s s N ∈{ }
(6-120)

The current point is updated to be x + s if f(x + s) < f(x); otherwise, the current
point remains unchanged and N, the region of trust, is shrunk and the trial
step computation is repeated.

The key questions in defining a specific trust-region approach to minimizing
f(x) are how to choose and compute the approximation q (defined at the
current point x), how to choose and modify the trust region N, and how
accurately to solve the trust-region subproblem. This section focuses on the
unconstrained problem. Later sections discuss additional complications due
to the presence of constraints on the variables.

In the standard trust-region method ([48]), the quadratic approximation q
is defined by the first two terms of the Taylor approximation to F at x; the
neighborhood N is usually spherical or ellipsoidal in shape. Mathematically
the trust-region subproblem is typically stated

min ,
1
2

s Hs s g DsT T+ ≤⎧
⎨
⎩

⎫
⎬
⎭

  such that  Δ
(6-121)

where g is the gradient of f at the current point x, H is the Hessian matrix
(the symmetric matrix of second derivatives), D is a diagonal scaling matrix, Δ
is a positive scalar, and . is the 2-norm. Good algorithms exist for solving
Equation 6-121 (see [48]); such algorithms typically involve the computation
of a full eigensystem and a Newton process applied to the secular equation

1 1
0

Δ
− =

s
.
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Such algorithms provide an accurate solution to Equation 6-121. However,
they require time proportional to several factorizations of H. Therefore, for
trust-region problems a different approach is needed. Several approximation
and heuristic strategies, based on Equation 6-121, have been proposed in
the literature ([42] and [50]). The approximation approach followed in
Optimization Toolbox solvers is to restrict the trust-region subproblem to
a two-dimensional subspace S ([39] and [42]). Once the subspace S has
been computed, the work to solve Equation 6-121 is trivial even if full
eigenvalue/eigenvector information is needed (since in the subspace, the
problem is only two-dimensional). The dominant work has now shifted to
the determination of the subspace.

The two-dimensional subspace S is determined with the aid of a
preconditioned conjugate gradient process described below. The solver defines
S as the linear space spanned by s1 and s2, where s1 is in the direction of the
gradient g, and s2 is either an approximate Newton direction, i.e., a solution to

H s g⋅ = −2 , (6-122)

or a direction of negative curvature,

s H sT
2 2 0⋅ ⋅ < . (6-123)

The philosophy behind this choice of S is to force global convergence (via the
steepest descent direction or negative curvature direction) and achieve fast
local convergence (via the Newton step, when it exists).

A sketch of unconstrained minimization using trust-region ideas is now easy
to give:

1 Formulate the two-dimensional trust-region subproblem.

2 Solve Equation 6-121 to determine the trial step s.

3 If f(x + s) < f(x), then x = x + s.

4 Adjust Δ.

These four steps are repeated until convergence. The trust-region dimension
Δ is adjusted according to standard rules. In particular, it is decreased if the
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trial step is not accepted, i.e., f(x + s) ≥ f(x). See [46] and [49] for a discussion
of this aspect.

Optimization Toolbox solvers treat a few important special cases of f with
specialized functions: nonlinear least-squares, quadratic functions, and linear
least-squares. However, the underlying algorithmic ideas are the same as for
the general case. These special cases are discussed in later sections.

Preconditioned Conjugate Gradient Method
A popular way to solve large symmetric positive definite systems of linear
equations Hp = –g is the method of Preconditioned Conjugate Gradients
(PCG). This iterative approach requires the ability to calculate matrix-vector
products of the form H·v where v is an arbitrary vector. The symmetric
positive definite matrix M is a preconditioner for H. That is, M = C2, where
C–1HC–1 is a well-conditioned matrix or a matrix with clustered eigenvalues.

In a minimization context, you can assume that the Hessian matrix H is
symmetric. However, H is guaranteed to be positive definite only in the
neighborhood of a strong minimizer. Algorithm PCG exits when a direction of
negative (or zero) curvature is encountered, i.e., dTHd ≤ 0. The PCG output
direction, p, is either a direction of negative curvature or an approximate
(tol controls how approximate) solution to the Newton system Hp = –g. In
either case p is used to help define the two-dimensional subspace used in
the trust-region approach discussed in “Trust-Region Methods for Nonlinear
Minimization” on page 6-5.

Trust-Region Dogleg Method
Another approach is to solve a linear system of equations to find the search
direction, namely, Newton’s method says to solve for the search direction
dk such that

J(xk)dk = –F(xk)
xk + 1 = xk + dk,

where J(xk) is the n-by-n Jacobian
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Newton’s method can run into difficulties. J(xk) may be singular, and so the
Newton step dk is not even defined. Also, the exact Newton step dk may be
expensive to compute. In addition, Newton’s method may not converge if the
starting point is far from the solution.

Using trust-region techniques (introduced in “Trust-Region Methods for
Nonlinear Minimization” on page 6-5) improves robustness when starting
far from the solution and handles the case when J(xk) is singular. To use a
trust-region strategy, a merit function is needed to decide if xk + 1 is better or
worse than xk. A possible choice is

min ( ) .
d

k
T

kf d F x d F x d= +( ) +( )1
2

But a minimum of f(d) is not necessarily a root of F(x).

The Newton step dk is a root of

M(xk + d) = F(xk) + J(xk)d,

and so it is also a minimum of m(d), where

min ( )
d

k k k
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(6-124)

Thenm(d) is a better choice of merit function than f(d), and so the trust-region
subproblem is
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such that D·d ≤ Δ. This subproblem can be efficiently solved using a dogleg
strategy.

For an overview of trust-region methods, see Conn [4], and Nocedal [31].

Trust-Region Dogleg Implementation
The key feature of this algorithm is the use of the Powell dogleg procedure
for computing the step d, which minimizes Equation 6-125. For a detailed
description, see Powell [34].

The step d is constructed from a convex combination of a Cauchy step (a step
along the steepest descent direction) and a Gauss-Newton step for f(x). The
Cauchy step is calculated as

dC = –αJ(xk)
TF(xk),

where α is chosen to minimize Equation 6-124.

The Gauss-Newton step is calculated by solving

J(xk)·dGN = –F(xk),

using the MATLAB \ (matrix left division) operator.

The step d is chosen so that

d = dC + λ(dGN – dC),

where λ is the largest value in the interval [0,1] such that d ≤ Δ. If Jk is
(nearly) singular, d is just the Cauchy direction.

The dogleg algorithm is efficient since it requires only one linear solve per
iteration (for the computation of the Gauss-Newton step). Additionally, it can
be more robust than using the Gauss-Newton method with a line search.

6-254



Equation Solving Algorithms

Levenberg-Marquardt Method
The Levenberg-Marquardt [25], and [27] method uses a search direction that
is a solution of the linear set of equations

J x J x I d J x F xk
T

k k k k
T

k( ) ( ) +( ) = − ( ) ( ) ,
(6-126)

or, optionally, of the equations

J x J x diag J x J x d J x F xk
T

k k k
T

k k k
T

k( ) ( ) + ( ) ( )( )( ) = − ( ) ( ) ,
(6-127)

where the scalar λk controls both the magnitude and direction of dk. Set option
ScaleProblem to 'none' to choose Equation 6-126, and set ScaleProblem to
'Jacobian' to choose Equation 6-127.

When λk is zero, the direction dk is the Gauss-Newton method. As λk tends
to infinity, dk tends towards the steepest descent direction, with magnitude
tending to zero. This implies that for some sufficiently large λk, the term
F(xk + dk) < F(xk) holds true. The term λk can therefore be controlled to ensure
descent even when second-order terms, which restrict the efficiency of the
Gauss-Newton method, are encountered. The Levenberg-Marquardt method
therefore uses a search direction that is a cross between the Gauss-Newton
direction and the steepest descent direction.

\ Algorithm
This algorithm is described in the MATLAB arithmetic operators section
for \ (mldivide).

fzero Algorithm
fzero attempts to find the root of a scalar function f of a scalar variable x.

fzero looks for an interval around an initial point such that f(x) changes
sign. If you give an initial interval instead of an initial point, fzero checks to
make sure f(x) has different signs at the endpoints of the interval. The initial
interval must be finite; it cannot contain ±Inf.

6-255



6 Optimization Algorithms and Examples

fzero uses a combination of interval bisection, linear interpolation, and
inverse quadratic interpolation in order to locate a root of f(x). See fzero
for more information.

6-256



Nonlinear Equations with Analytic Jacobian

Nonlinear Equations with Analytic Jacobian
This example demonstrates the use of the default trust-region-dogleg fsolve
algorithm (see “Large-Scale vs. Medium-Scale Algorithms” on page 2-12). It is
intended for problems where

• The system of nonlinear equations is square, i.e., the number of equations
equals the number of unknowns.

• There exists a solution x such that F(x) = 0.

The example uses fsolve to obtain the minimum of the banana (or
Rosenbrock) function by deriving and then solving an equivalent system of
nonlinear equations. The Rosenbrock function, which has a minimum of
F(x) = 0, is a common test problem in optimization. It has a high degree of
nonlinearity and converges extremely slowly if you try to use steepest descent
type methods. It is given by

f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

First generalize this function to an n-dimensional function, for any positive,
even value of n:

f x x x xi i i
i

n
( ) ( ) .

/
= −( ) + −− −

=
∑ 100 12 2 1

2 2
2 1

2

1

2

This function is referred to as the generalized Rosenbrock function. It consists
of n squared terms involving n unknowns.

Before you can use fsolve to find the values of x such that F(x) = 0, i.e., obtain
the minimum of the generalized Rosenbrock function, you must rewrite the
function as the following equivalent system of nonlinear equations:
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This system is square, and you can use fsolve to solve it. As the example
demonstrates, this system has a unique solution given by xi = 1, i = 1,...,n.

Step 1: Write a file bananaobj.m to compute the
objective function values and the Jacobian.

function [F,J] = bananaobj(x)

% Evaluate the vector function and the Jacobian matrix for

% the system of nonlinear equations derived from the general

% n-dimensional Rosenbrock function.

% Get the problem size

n = length(x);

if n == 0, error('Input vector, x, is empty.'); end

if mod(n,2) ~= 0,

error('Input vector, x ,must have an even number of components.');

end

% Evaluate the vector function

odds = 1:2:n;

evens = 2:2:n;

F = zeros(n,1);

F(odds,1) = 1-x(odds);

F(evens,1) = 10.*(x(evens)-x(odds).^2);

% Evaluate the Jacobian matrix if nargout > 1

if nargout > 1

c = -ones(n/2,1); C = sparse(odds,odds,c,n,n);

d = 10*ones(n/2,1); D = sparse(evens,evens,d,n,n);

e = -20.*x(odds); E = sparse(evens,odds,e,n,n);
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J = C + D + E;

end

Step 2: Call the solve routine for the system of
equations.

n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options = optimoptions(@fsolve,'Display','iter','Jacobian','on');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

Use the starting point x(i) = –1.9 for the odd indices, and x(i) = 2 for the even
indices. Set Display to 'iter' to see the solver’s progress. Set Jacobian
to 'on' to use the Jacobian defined in bananaobj.m. The fsolve function
generates the following output:

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 1 8563.84 615 1

1 2 3093.71 1 329 1

2 3 225.104 2.5 34.8 2.5

3 4 212.48 6.25 34.1 6.25

4 5 212.48 6.25 34.1 6.25

5 6 102.771 1.5625 6.39 1.56

6 7 102.771 3.90625 6.39 3.91

7 8 87.7443 0.976563 2.19 0.977

8 9 74.1426 2.44141 6.27 2.44

9 10 74.1426 2.44141 6.27 2.44

10 11 52.497 0.610352 1.52 0.61

11 12 41.3297 1.52588 4.63 1.53

12 13 34.5115 1.52588 6.97 1.53

13 14 16.9716 1.52588 4.69 1.53

14 15 8.16797 1.52588 3.77 1.53

15 16 3.55178 1.52588 3.56 1.53

16 17 1.38476 1.52588 3.31 1.53

17 18 0.219553 1.16206 1.66 1.53

18 19 0 0.0468565 0 1.53

Equation solved.
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fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.
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Nonlinear Equations with Finite-Difference Jacobian
In the example “Nonlinear Equations with Analytic Jacobian” on page 6-257,
the function bananaobj evaluates F and computes the Jacobian J. What if
the code to compute the Jacobian is not available? By default, if you do not
indicate that the Jacobian can be computed in the objective function (by
setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and
lsqcurvefit instead use finite differencing to approximate the Jacobian.
This is the default Jacobian option. You can select finite differencing by
setting Jacobian to 'off' using optimoptions.

This example uses bananaobj from the example “Nonlinear Equations with
Analytic Jacobian” on page 6-257 as the objective function, but sets Jacobian
to 'off' so that fsolve approximates the Jacobian and ignores the second
bananaobj output.

n = 64;
x0(1:n,1) = -1.9;
x0(2:2:n,1) = 2;
options = optimoptions(@fsolve,'Display','iter','Jacobian','off');
[x,F,exitflag,output,JAC] = fsolve(@bananaobj,x0,options);

The example produces the following output:

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 65 8563.84 615 1

1 130 3093.71 1 329 1

2 195 225.104 2.5 34.8 2.5

3 260 212.48 6.25 34.1 6.25

4 261 212.48 6.25 34.1 6.25

5 326 102.771 1.5625 6.39 1.56

6 327 102.771 3.90625 6.39 3.91

7 392 87.7443 0.976562 2.19 0.977

8 457 74.1426 2.44141 6.27 2.44

9 458 74.1426 2.44141 6.27 2.44

10 523 52.497 0.610352 1.52 0.61

11 588 41.3297 1.52588 4.63 1.53

12 653 34.5115 1.52588 6.97 1.53

13 718 16.9716 1.52588 4.69 1.53
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14 783 8.16797 1.52588 3.77 1.53

15 848 3.55178 1.52588 3.56 1.53

16 913 1.38476 1.52588 3.31 1.53

17 978 0.219553 1.16206 1.66 1.53

18 1043 0 0.0468565 0 1.53

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

The finite-difference version of this example requires the same number of
iterations to converge as the analytic Jacobian version in the preceding
example. It is generally the case that both versions converge at about the same
rate in terms of iterations. However, the finite-difference version requires
many additional function evaluations. The cost of these extra evaluations
might or might not be significant, depending on the particular problem.
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Nonlinear Equations with Jacobian
Consider the problem of finding a solution to a system of nonlinear equations
whose Jacobian is sparse. The dimension of the problem in this example
is 1000. The goal is to find x such that F(x) = 0. Assuming n = 1000, the
nonlinear equations are

F x x x

F i x x x x

F n x x

i i i i

n

( ) ,

( ) ,

( )

1 3 2 2 1

3 2 2 1

3 2

1 1
2
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1 1

= − − +

= − − − +

= −
− +

nn nx2
1 1− +− .

To solve a large nonlinear system of equations, F(x) = 0, you can use the
trust-region reflective algorithm available in fsolve, a large-scale algorithm
(“Large-Scale vs. Medium-Scale Algorithms” on page 2-12).

Step 1: Write a file nlsf1.m that computes the
objective function values and the Jacobian.

function [F,J] = nlsf1(x)
% Evaluate the vector function
n = length(x);
F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;
% Evaluate the Jacobian if nargout > 1
if nargout > 1

d = -4*x + 3*ones(n,1); D = sparse(1:n,1:n,d,n,n);
c = -2*ones(n-1,1); C = sparse(1:n-1,2:n,c,n,n);
e = -ones(n-1,1); E = sparse(2:n,1:n-1,e,n,n);
J = C + D + E;

end
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Step 2: Call the solve routine for the system of
equations.

xstart = -ones(1000,1);
fun = @nlsf1;
options = optimoptions(@fsolve,'Display','iter',...

'Algorithm','trust-region-reflective',...
'Jacobian','on','PrecondBandWidth',0);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

A starting point is given as well as the function name. The default method
for fsolve is trust-region-dogleg, so it is necessary to specify 'Algorithm'
as 'trust-region-reflective' in the options argument in order to select
the trust-region-reflective algorithm. Setting the Display option to 'iter'
causes fsolve to display the output at each iteration. Setting Jacobian to
'on', causes fsolve to use the Jacobian information available in nlsf1.m.

The commands display this output:

Norm of First-order

Iteration Func-count f(x) step optimality

0 1 1011 19

1 2 16.1942 7.91898 2.35

2 3 0.0228027 1.33142 0.291

3 4 0.000103359 0.0433329 0.0201

4 5 7.3792e-07 0.0022606 0.000946

5 6 4.02299e-10 0.000268381 4.12e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

A linear system is (approximately) solved in each major iteration using the
preconditioned conjugate gradient method. Setting PrecondBandWidth to 0
in options means a diagonal preconditioner is used. (PrecondBandWidth
specifies the bandwidth of the preconditioning matrix. A bandwidth of 0
means there is only one diagonal in the matrix.)
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From the first-order optimality values, fast linear convergence occurs. The
number of conjugate gradient (CG) iterations required per major iteration is
low, at most five for a problem of 1000 dimensions, implying that the linear
systems are not very difficult to solve in this case (though more work is
required as convergence progresses).

If you want to use a tridiagonal preconditioner, i.e., a preconditioning matrix
with three diagonals (or bandwidth of one), set PrecondBandWidth to the
value 1:

options = optimoptions(@fsolve,'Display','iter','Jacobian','on',...
'Algorithm','trust-region-reflective','PrecondBandWidth',1);

[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case the output is

Norm of First-order

Iteration Func-count f(x) step optimality

0 1 1011 19

1 2 16.0839 7.92496 1.92

2 3 0.0458181 1.3279 0.579

3 4 0.000101184 0.0631898 0.0203

4 5 3.16615e-07 0.00273698 0.00079

5 6 9.72481e-10 0.00018111 5.82e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

Note that although the same number of iterations takes place, the number
of PCG iterations has dropped, so less work is being done per iteration. See
“Preconditioned Conjugate Gradient Method” on page 6-29.

Setting PrecondBandWidth to Inf (this is the default) means that the solver
uses Cholesky factorization rather than PCG.
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Nonlinear Equations with Jacobian Sparsity Pattern
In the example “Nonlinear Equations with Analytic Jacobian” on page 6-257,
the function nlsf1 computes the Jacobian J, a sparse matrix, along with the
evaluation of F. What if the code to compute the Jacobian is not available?
By default, if you do not indicate that the Jacobian can be computed in nlsf1
(by setting the Jacobian option in options to 'on'), fsolve, lsqnonlin, and
lsqcurvefit instead uses finite differencing to approximate the Jacobian.

In order for this finite differencing to be as efficient as possible, you should
supply the sparsity pattern of the Jacobian, by setting JacobPattern to a
sparse matrix Jstr in options. That is, supply a sparse matrix Jstr whose
nonzero entries correspond to nonzeros of the Jacobian for all x. Indeed, the
nonzeros of Jstr can correspond to a superset of the nonzero locations of J;
however, in general the computational cost of the sparse finite-difference
procedure will increase with the number of nonzeros of Jstr.

Providing the sparsity pattern can drastically reduce the time needed to
compute the finite differencing on large problems. If the sparsity pattern
is not provided (and the Jacobian is not computed in the objective function
either) then, in this problem with 1000 variables, the finite-differencing code
attempts to compute all 1000-by-1000 entries in the Jacobian. But in this case
there are only 2998 nonzeros, substantially less than the 1,000,000 possible
nonzeros the finite-differencing code attempts to compute. In other words, this
problem is solvable if you provide the sparsity pattern. If not, most computers
run out of memory when the full dense finite-differencing is attempted. On
most small problems, it is not essential to provide the sparsity structure.

Suppose the sparse matrix Jstr, computed previously, has been saved in file
nlsdat1.mat. The following driver calls fsolve applied to nlsf1a, which is
nlsf1 without the Jacobian. Sparse finite-differencing is used to estimate the
sparse Jacobian matrix as needed.

Step 1: Write a file nlsf1a.m that computes the
objective function values.

function F = nlsf1a(x)
% Evaluate the vector function
n = length(x);
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F = zeros(n,1);
i = 2:(n-1);
F(i) = (3-2*x(i)).*x(i)-x(i-1)-2*x(i+1) + 1;
F(n) = (3-2*x(n)).*x(n)-x(n-1) + 1;
F(1) = (3-2*x(1)).*x(1)-2*x(2) + 1;

Step 2: Call the system of equations solve routine.

xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimoptions(@fsolve,'Display','iter','JacobPattern',Jstr,...

'Algorithm','trust-region-reflective','PrecondBandWidth',1);
[x,fval,exitflag,output] = fsolve(fun,xstart,options);

In this case, the output displayed is

Norm of First-order

Iteration Func-count f(x) step optimality

0 5 1011 19

1 10 16.0839 7.92496 1.92

2 15 0.0458179 1.3279 0.579

3 20 0.000101184 0.0631896 0.0203

4 25 3.16616e-07 0.00273698 0.00079

5 30 9.72483e-10 0.00018111 5.82e-05

Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the default value

of the function tolerance. However, the last step was ineffective.

Alternatively, it is possible to choose a sparse direct linear solver (i.e., a sparse
QR factorization) by indicating a “complete” preconditioner. For example, if
you set PrecondBandWidth to Inf, then a sparse direct linear solver is used
instead of a preconditioned conjugate gradient iteration:

xstart = -ones(1000,1);
fun = @nlsf1a;
load nlsdat1 % Get Jstr
options = optimoptions(@fsolve,'Display','iter','JacobPattern',Jstr,...
'Algorithm','trust-region-reflective','PrecondBandWidth',inf);
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[x,fval,exitflag,output] = fsolve(fun,xstart,options);

and the resulting display is

Norm of First-order

Iteration Func-count f(x) step optimality

0 5 1011 19

1 10 15.9018 7.92421 1.89

2 15 0.0128161 1.32542 0.0746

3 20 1.73502e-08 0.0397923 0.000196

4 25 1.10716e-18 4.55495e-05 2.74e-09

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

When the sparse direct solvers are used, the CG iteration is 0 for that (major)
iteration, as shown in the output under CG-Iterations. Notice that the final
optimality and f(x) value (which for fsolve, f(x), is the sum of the squares of
the function values) are closer to zero than using the PCG method, which
is often the case.
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Nonlinear Systems with Constraints

In this section...

“Solve Equations with Inequality Constraints” on page 6-269

“Use Different Start Points” on page 6-270

“Use Different Algorithms” on page 6-270

“Use lsqnonlin with Bounds” on page 6-271

“Set Equations and Inequalities as fmincon Constraints” on page 6-272

Solve Equations with Inequality Constraints
fsolve solves systems of nonlinear equations. However, it does not allow you
to include any constraints, even bound constraints. The question is, how can
you solve systems of nonlinear equations when you have constraints?

The short answer is, there are no guarantees that a solution exists that
satisfies your constraints. There is no guarantee that any solution exists, even
one that does not satisfy your constraints. Nevertheless, there are techniques
that can help you search for solutions that satisfy your constraints.

To illustrate the techniques, consider how to solve the equations

F x x x
x

x x

F x x x
x

1 1 1
2
2

2
2

2

2 2 2
1
2

1 10
1

1

2 20
1

1

( )

( )

     

 

     

 xx x1
2

1
,

(6-128)

where the components of x must be nonnegative. Clearly, there are four
solutions to the equations:

x = (–1,–2)
x = (10,–2),
x = (–1,20),
x = (10,20).
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There is only one solution that satisfies the constraints, namely x = (10,20).

To solve the equations numerically, first enter code to calculate F(x).

function F = fbnd(x)

F(1) = (x(1)+1)*(10-x(1))*(1+x(2)^2)/(1+x(2)^2+x(2));
F(2) = (x(2)+2)*(20-x(2))*(1+x(1)^2)/(1+x(1)^2+x(1));

Save this code as the file fbnd.m on your MATLAB path.

Use Different Start Points
Generally, a system of N equations in N variables has isolated solutions,
meaning each solution has no nearby neighbors that are also solutions. So
one way to search for a solution that satisfies some constraints is to generate
a number of initial points x0, and run fsolve starting at each x0.

For this example, to look for a solution to Equation 6-128, take 10 random
points that are normally distributed with mean 0 and standard deviation 100.

N = 10; % try 10 random start points
pts = 100*randn(N,2); % initial points are rows in pts
soln = zeros(N,2); % allocate solution
opts = optimoptions('fsolve','Display','off');
rng('default') % for reproducibility
for k = 1:N

soln(k,:) = fsolve(@fbnd,pts(k,:),opts); % find solutions
end

Examine the solutions in soln, and you find several that satisfy the
constraints.

Use Different Algorithms
There are three fsolve algorithms. Each can lead to different solutions.

For this example, take x0 = [1,9] and examine the solution each algorithm
returns.
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x0 = [1,9];
opts = optimoptions(@fsolve,'Display','off',...

'Algorithm','trust-region-dogleg');
x1 = fsolve(@fbnd,x0,opts)

x1 =

-1.0000 -2.0000

opts.Algorithm = 'trust-region-reflective';
x2 = fsolve(@fbnd,x0,opts)

x2 =

-1.0000 20.0000

opts.Algorithm = 'levenberg-marquardt';
x3 = fsolve(@fbnd,x0,opts)

x3 =

0.9523 8.9941

Here, all three algorithms find different solutions for the same initial point.
In fact, x3 is not even a solution, but is simply a locally stationary point.

Use lsqnonlin with Bounds
lsqnonlin tries to minimize the sum of squares of the components of a
vector function F(x). Therefore, it attempts to solve the equation F(x) = 0.
Furthermore, lsqnonlin accepts bound constraints.

Formulate the example problem for lsqnonlin and solve it.

lb = [0,0];
rng('default')
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x0 = 100*randn(2,1);
[x res] = lsqnonlin(@fbnd,x0,lb)

x =

10.0000
20.0000

res =

2.4783e-25

You can use lsqnonlin with the Global Optimization Toolbox MultiStart
solver to search over many initial points automatically. See “MultiStart
Using lsqcurvefit or lsqnonlin”.

Set Equations and Inequalities as fmincon Constraints
You can reformulate the problem and use fmincon as follows:

• Give a constant objective function, such as @(x)0, which evaluates to 0 for
each x.

• Set the fsolve objective function as the nonlinear equality constraints
in fmincon.

• Give any other constraints in the usual fmincon syntax.

For this example, write a function file for the nonlinear inequality constraint.

function [c,ceq] = fminconstr(x)

c = []; % no nonlinear inequality
ceq = fbnd(x); % the fsolve objective is fmincon constraints

Save this code as the file fminconstr.m on your MATLAB path.

Solve the constrained problem.
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lb = [0,0]; % lower bound constraint
rng('default') % reproducible initial point
x0 = 100*randn(2,1);
opts = optimoptions(@fmincon,'Algorithm','interior-point','Display','off');
x = fmincon(@(x)0,x0,[],[],[],[],lb,[],@fminconstr,opts)

x =

10.0000
20.0000
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Parallel Computing in Optimization Toolbox Functions

In this section...

“Parallel Optimization Functionality” on page 7-2

“Parallel Estimation of Gradients” on page 7-3

“Nested Parallel Functions” on page 7-4

Parallel Optimization Functionality
Parallel computing is the technique of using multiple processors on a single
problem. The reason to use parallel computing is to speed computations.

The Optimization Toolbox solvers fmincon, fgoalattain, and fminimax can
automatically distribute the numerical estimation of gradients of objective
functions and nonlinear constraint functions to multiple processors. These
solvers use parallel gradient estimation under the following conditions:

• You have a license for Parallel Computing Toolbox software.

• The option GradObj is set to 'off', or, if there is a nonlinear constraint
function, the option GradConstr is set to 'off'. Since 'off' is the default
value of these options, you don’t have to set them; just don’t set them both
to 'on'.

• Parallel computing is enabled with parpool, a Parallel Computing Toolbox
function.

• The option UseParallel is set to true. The default value of this option
is false.

When these conditions hold, the solvers compute estimated gradients in
parallel.

Note Even when running in parallel, a solver occasionally calls the objective
and nonlinear constraint functions serially on the host machine. Therefore,
ensure that your functions have no assumptions about whether they are
evaluated in serial or parallel.
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Parallel Estimation of Gradients
One subroutine was made parallel in the functions fmincon, fgoalattain,
and fminimax: the subroutine that estimates the gradient of the objective
function and constraint functions. This calculation involves computing
function values at points near the current location x. Essentially, the
calculation is

∇f x
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n
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where

• f represents objective or constraint functions

• ei are the unit direction vectors

• Δi is the size of a step in the ei direction

To estimate ∇f(x) in parallel, Optimization Toolbox solvers distribute the
evaluation of (f(x + Δiei) – f(x))/Δi to extra processors.

Parallel Central Differences
You can choose to have gradients estimated by central finite differences
instead of the default forward finite differences. The basic central finite
difference formula is
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This takes twice as many function evaluations as forward finite differences,
but is usually much more accurate. Central finite differences work in parallel
exactly the same as forward finite differences.

Enable central finite differences by using optimoptions to set the
FinDiffType option to 'central'. To use forward finite differences, set the
FinDiffType option to 'forward'.
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Nested Parallel Functions
Solvers employ the Parallel Computing Toolbox function parfor to perform
parallel estimation of gradients. parfor does not work in parallel when called
from within another parfor loop. Therefore, you cannot simultaneously use
parallel gradient estimation and parallel functionality within your objective
or constraint functions.

Suppose, for example, your objective function userfcn calls parfor, and
you wish to call fmincon in a loop. Suppose also that the conditions for
parallel gradient evaluation of fmincon, as given in “Parallel Optimization
Functionality” on page 7-2, are satisfied. When parfor Runs In Parallel on
page 7-4 shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.

2 The outermost parfor loop is in fmincon. Only fmincon runs in parallel.

3 The outermost parfor loop is in userfcn. userfcn can use parfor in
parallel.
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Using Parallel Computing in Optimization Toolbox

In this section...

“Using Parallel Computing with Multicore Processors” on page 7-5

“Using Parallel Computing with a Multiprocessor Network” on page 7-6

“Testing Parallel Computations” on page 7-7

Using Parallel Computing with Multicore Processors
If you have a multicore processor, you might see speedup using parallel
processing. You can establish a parallel pool of several workers with a Parallel
Computing Toolbox license. For a description of Parallel Computing Toolbox
software, see “Getting Started with Parallel Computing Toolbox”.

Suppose you have a dual-core processor, and want to use parallel computing:

• Enter

parpool

at the command line. MATLAB starts a pool of workers using the multicore
processor. If you had previously set a nondefault cluster profile, you can
enforce multicore (local) computing:

parpool('local')

Note Depending on your preferences, MATLAB can start a parallel pool
automatically. To enable this feature, check Automatically create a
parallel pool in Home > Parallel > Parallel Preferences.

•

- For command-line use, enter

options = optimoptions('solvername','UseParallel',true);

- For Optimization app, check Options > Approximated derivatives
> Evaluate in parallel.
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When you run an applicable solver with options, applicable solvers
automatically use parallel computing.

To stop computing optimizations in parallel, set UseParallel to false, or
set the Optimization app not to compute in parallel. To halt all parallel
computation, enter

delete(gcp)

Using Parallel Computing with a Multiprocessor
Network
If you have multiple processors on a network, use Parallel Computing Toolbox
functions and MATLAB Distributed Computing Server™ software to establish
parallel computation. Here are the steps to take:

1 Make sure your system is configured properly for parallel computing.
Check with your systems administrator, or refer to the Parallel Computing
Toolbox documentation.

To perform a basic check:

a At the command line, enter

parpool(prof)

where prof is your cluster profile.

b Workers must be able to access your objective function file and, if
applicable, your nonlinear constraint function file. There are two ways
of ensuring access:

i Distribute the files to the workers using the parpool AttachedFiles
argument. For example, if objfun.m is your objective function file,
and constrfun.m is your nonlinear constraint function file, enter

parpool('AttachedFiles',{'objfun.m','constrfun.m'});

Workers access their own copies of the files.

ii Give a network file path to your files. If network_file_path is the
network path to your objective or constraint function files, enter

pctRunOnAll('addpath network_file_path')
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Workers access the function files over the network.

c Check whether a file is on the path of every worker by entering

pctRunOnAll('which filename')

If any worker does not have a path to the file, it reports

filename not found.

2

• For command-line use, enter

options = optimoptions('solvername','UseParallel',true);

• For Optimization app, check Options > Approximated derivatives
> Evaluate in parallel.

After you establish your parallel computing environment, applicable solvers
automatically use parallel computing whenever you call them with options.

To stop computing optimizations in parallel, set UseParallel to false, or
set the Optimization app not to compute in parallel. To halt all parallel
computation, enter

delete(gcp)

Testing Parallel Computations
To test see if a problem runs correctly in parallel,

1 Try your problem without parallel computation to ensure that it runs
properly serially. Make sure this is successful (gives correct results) before
going to the next test.

2 Set UseParallel to true, and ensure that there is no parallel pool using
delete(gcp). Uncheck Automatically create a parallel pool in Home
> Parallel > Parallel Preferences so MATLAB does not create a parallel
pool . Your problem runs parfor serially, with loop iterations in reverse
order from a for loop. Make sure this is successful (gives correct results)
before going to the next test.
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3 Set UseParallel to true, and create a parallel pool using parpool.
Unless you have a multicore processor or a network set up, you won’t
see any speedup. This testing is simply to verify the correctness of the
computations.

Remember to call your solver using an options structure to test or use parallel
functionality.
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Minimizing an Expensive Optimization Problem Using
Parallel Computing Toolbox™

This example shows how to how to speed up the minimization of an expensive
optimization problem using functions in Optimization Toolbox™ and
Global Optimization Toolbox. In the first part of the example we solve the
optimization problem by evaluating functions in a serial fashion and in the
second part of the example we solve the same problem using the parallel for
loop (parfor) feature by evaluating functions in parallel. We compare the
time taken by the optimization function in both cases.

Expensive Optimization Problem

For the purpose of this example, we solve a problem in four variables, where
the objective and constraint functions are made artificially expensive by
pausing.

type expensive_objfun.m
type expensive_confun.m

function f = expensive_objfun(x)
%EXPENSIVE_OBJFUN An expensive objective function used in optimparfor examp

% Copyright 2007-2013 The MathWorks, Inc.
% $Revision: 1.1.8.2 $ $Date: 2013/05/04 00:47:14 $

% Simulate an expensive function by pausing
pause(0.1)
% Evaluate objective function
f = exp(x(1)) * (4*x(3)^2 + 2*x(4)^2 + 4*x(1)*x(2) + 2*x(2) + 1);

function [c,ceq] = expensive_confun(x)
%EXPENSIVE_CONFUN An expensive constraint function used in optimparfor exam

% Copyright 2007-2013 The MathWorks, Inc.
% $Revision: 1.1.8.2 $ $Date: 2013/05/04 00:47:13 $

% Simulate an expensive function by pausing
pause(0.1);
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% Evaluate constraints
c = [1.5 + x(1)*x(2)*x(3) - x(1) - x(2) - x(4);

-x(1)*x(2) + x(4) - 10];
% No nonlinear equality constraints:
ceq = [];

Minimizing Using fmincon

We are interested in measuring the time taken by fmincon in serial so that
we can compare it to the parallel fmincon evaluation.

startPoint = [-1 1 1 -1];
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_co
time_fmincon_sequential = toc(startTime);
fprintf('Serial FMINCON optimization takes %g seconds.\n',time_fmincon_sequ

Norm of First-ord
Iter F-count f(x) Feasibility Steplength step optimali

0 5 1.839397e+00 1.500e+00 3.311e+
1 12 -8.841073e-01 4.019e+00 4.900e-01 2.335e+00 7.015e-
2 17 -1.382832e+00 0.000e+00 1.000e+00 1.142e+00 9.272e-
3 22 -2.241952e+00 0.000e+00 1.000e+00 2.447e+00 1.481e+
4 27 -3.145762e+00 0.000e+00 1.000e+00 1.756e+00 5.464e+
5 32 -5.277523e+00 6.413e+00 1.000e+00 2.224e+00 1.357e+
6 37 -6.310709e+00 0.000e+00 1.000e+00 1.099e+00 1.309e+
7 43 -6.447956e+00 0.000e+00 7.000e-01 2.191e+00 3.631e+
8 48 -7.135133e+00 0.000e+00 1.000e+00 3.719e-01 1.205e-
9 53 -7.162732e+00 0.000e+00 1.000e+00 4.083e-01 2.935e-

10 58 -7.178390e+00 0.000e+00 1.000e+00 1.591e-01 3.110e-
11 63 -7.180399e+00 1.191e-05 1.000e+00 2.644e-02 1.553e-
12 68 -7.180408e+00 0.000e+00 1.000e+00 1.140e-02 5.584e-
13 73 -7.180411e+00 0.000e+00 1.000e+00 1.764e-03 4.677e-
14 78 -7.180412e+00 0.000e+00 1.000e+00 8.827e-05 1.304e-
15 83 -7.180412e+00 0.000e+00 1.000e+00 1.528e-06 1.023e-

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
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feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint

Serial FMINCON optimization takes 18.1397 seconds.

Minimizing Using Genetic Algorithm

Since ga usually takes many more function evaluations than fmincon, we
remove the expensive constraint from this problem and perform unconstrained
optimization instead; we pass empty ([]) for constraints. In addition, we limit
the maximum number of generations to 15 for ga so that ga can terminate
in a reasonable amount of time. We are interested in measuring the time
taken by ga so that we can compare it to the parallel ga evaluation. Note that
running ga requires Global Optimization Toolbox.

rng default % for reproducibility
try

gaAvailable = false;
nvar = 4;
gaoptions = gaoptimset('Generations',15,'Display','iter');
startTime = tic;
gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
time_ga_sequential = toc(startTime);
fprintf('Serial GA optimization takes %g seconds.\n',time_ga_sequential
gaAvailable = true;

catch ME
warning(message('optimdemos:optimparfor:gaNotFound'));

end

Best Mean Stall
Generation f-count f(x) f(x) Generations

1 100 -6.433e+16 -1.287e+15 0
2 150 -1.501e+17 -7.138e+15 0
3 200 -7.878e+26 -1.576e+25 0
4 250 -8.664e+27 -1.466e+26 0
5 300 -1.096e+28 -2.062e+26 0
6 350 -5.422e+33 -1.145e+32 0
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7 400 -1.636e+36 -3.316e+34 0
8 450 -2.933e+36 -1.513e+35 0
9 500 -1.351e+40 -2.705e+38 0

10 550 -1.351e+40 -7.9e+38 1
11 600 -2.07e+40 -2.266e+39 0
12 650 -1.845e+44 -3.696e+42 0
13 700 -2.893e+44 -1.687e+43 0
14 750 -5.076e+44 -6.516e+43 0
15 800 -8.321e+44 -2.225e+44 0

Optimization terminated: maximum number of generations exceeded.
Serial GA optimization takes 87.3686 seconds.

Setting Parallel Computing Toolbox

The finite differencing used by the functions in Optimization Toolbox to
approximate derivatives is done in parallel using the parfor feature if
Parallel Computing Toolbox is available and there is a parallel pool of workers.
Similarly, ga, gamultiobj, and patternsearch solvers in Global Optimization
Toolbox evaluate functions in parallel. To use the parfor feature, we use the
parpool function to set up the parallel environment. The computer on which
this example is published has four cores, so parpool starts four MATLAB®
workers. If there is already a parallel pool when you run this example, we use
that pool; see the documentation for parpool for more information.

if max(size(gcp)) == 0 % parallel pool needed
parpool % create the parallel pool

end

Starting parallel pool (parpool) using the 'local' profile ... connected to

Minimizing Using Parallel fmincon

To minimize our expensive optimization problem using the parallel fmincon
function, we need to explicitly indicate that our objective and constraint
functions can be evaluated in parallel and that we want fmincon to use its
parallel functionality wherever possible. Currently, finite differencing can be
done in parallel. We are interested in measuring the time taken by fmincon
so that we can compare it to the serial fmincon run.

options = optimoptions(options,'UseParallel',true);
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startTime = tic;
xsol = fmincon(@expensive_objfun,startPoint,[],[],[],[],[],[],@expensive_co
time_fmincon_parallel = toc(startTime);
fprintf('Parallel FMINCON optimization takes %g seconds.\n',time_fmincon_pa

Norm of First-ord
Iter F-count f(x) Feasibility Steplength step optimali

0 5 1.839397e+00 1.500e+00 3.311e+
1 12 -8.841073e-01 4.019e+00 4.900e-01 2.335e+00 7.015e-
2 17 -1.382832e+00 0.000e+00 1.000e+00 1.142e+00 9.272e-
3 22 -2.241952e+00 0.000e+00 1.000e+00 2.447e+00 1.481e+
4 27 -3.145762e+00 0.000e+00 1.000e+00 1.756e+00 5.464e+
5 32 -5.277523e+00 6.413e+00 1.000e+00 2.224e+00 1.357e+
6 37 -6.310709e+00 0.000e+00 1.000e+00 1.099e+00 1.309e+
7 43 -6.447956e+00 0.000e+00 7.000e-01 2.191e+00 3.631e+
8 48 -7.135133e+00 0.000e+00 1.000e+00 3.719e-01 1.205e-
9 53 -7.162732e+00 0.000e+00 1.000e+00 4.083e-01 2.935e-

10 58 -7.178390e+00 0.000e+00 1.000e+00 1.591e-01 3.110e-
11 63 -7.180399e+00 1.191e-05 1.000e+00 2.644e-02 1.553e-
12 68 -7.180408e+00 0.000e+00 1.000e+00 1.140e-02 5.584e-
13 73 -7.180411e+00 0.000e+00 1.000e+00 1.764e-03 4.677e-
14 78 -7.180412e+00 0.000e+00 1.000e+00 8.827e-05 1.304e-
15 83 -7.180412e+00 0.000e+00 1.000e+00 1.528e-06 1.023e-

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints are satisfied to within the default value of the constraint

Parallel FMINCON optimization takes 8.78988 seconds.

Minimizing Using Parallel Genetic Algorithm

To minimize our expensive optimization problem using the ga function,
we need to explicitly indicate that our objective function can be evaluated
in parallel and that we want ga to use its parallel functionality wherever
possible. To use the parallel ga we also require that the ’Vectorized’ option
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be set to the default (i.e., ’off’). We are again interested in measuring the
time taken by ga so that we can compare it to the serial ga run. Though this
run may be different from the serial one because ga uses a random number
generator, the number of expensive function evaluations is the same in both
runs. Note that running ga requires Global Optimization Toolbox.

rng default % to get the same evaluations as the previous run
if gaAvailable

gaoptions = gaoptimset(gaoptions,'UseParallel',true);
startTime = tic;
gasol = ga(@expensive_objfun,nvar,[],[],[],[],[],[],[],gaoptions);
time_ga_parallel = toc(startTime);
fprintf('Parallel GA optimization takes %g seconds.\n',time_ga_parallel

end

Best Mean Stall
Generation f-count f(x) f(x) Generations

1 100 -6.433e+16 -1.287e+15 0
2 150 -1.501e+17 -7.138e+15 0
3 200 -7.878e+26 -1.576e+25 0
4 250 -8.664e+27 -1.466e+26 0
5 300 -1.096e+28 -2.062e+26 0
6 350 -5.422e+33 -1.145e+32 0
7 400 -1.636e+36 -3.316e+34 0
8 450 -2.933e+36 -1.513e+35 0
9 500 -1.351e+40 -2.705e+38 0

10 550 -1.351e+40 -7.9e+38 1
11 600 -2.07e+40 -2.266e+39 0
12 650 -1.845e+44 -3.696e+42 0
13 700 -2.893e+44 -1.687e+43 0
14 750 -5.076e+44 -6.516e+43 0
15 800 -8.321e+44 -2.225e+44 0

Optimization terminated: maximum number of generations exceeded.
Parallel GA optimization takes 23.707 seconds.

Compare Serial and Parallel Time

X = [time_fmincon_sequential time_fmincon_parallel];
Y = [time_ga_sequential time_ga_parallel];
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t = [0 1];
plot(t,X,'r--',t,Y,'k-')
ylabel('Time in seconds')
legend('fmincon','ga')
set(gca,'XTick',[0 1])
set(gca,'XTickLabel',{'Serial' 'Parallel'})
axis([0 1 0 ceil(max([X Y]))])
title('Serial Vs. Parallel Times')

Utilizing parallel function evaluation via parfor improved the efficiency
of both fmincon and ga. The improvement is typically better for expensive
objective and constraint functions.

At last we delete the parallel pool.

if max(size(gcp)) > 0 % parallel pool exists
delete(gcp) % delete the pool

end

Parallel pool using the 'local' profile is shutting down.
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Improving Performance with Parallel Computing

In this section...

“Factors That Affect Speed” on page 7-16

“Factors That Affect Results” on page 7-17

“Searching for Global Optima” on page 7-17

Factors That Affect Speed
Some factors may affect the speed of execution of parallel processing:

• Parallel overhead. There is overhead in calling parfor instead of for. If
function evaluations are fast, this overhead could become appreciable. In
particular, solving a problem in parallel can be slower than solving the
problem serially.

• No nested parfor loops. This is described in “Nested Parallel Functions” on
page 7-4. parfor does not work in parallel when called from within another
parfor loop. If you have programmed your objective or constraint functions
to take advantage of parallel processing, the limitation of no nested parfor
loops may cause a solver to run more slowly than you expect. In particular,
the parallel computation of finite differences takes precedence, since that
is an outer loop. This causes any parallel code within the objective or
constraint functions to execute serially.

• When executing serially, parfor loops run slower than for loops.
Therefore, for best performance, ensure that only your outermost parallel
loop calls parfor. For example, suppose your code calls fmincon within
a parfor loop. For best performance in this case, set the fmincon
UseParallel option to false.

• Passing parameters. Parameters are automatically passed to worker
machines during the execution of parallel computations. If there are a large
number of parameters, or they take a large amount of memory, passing
them may slow the execution of your computation.

• Contention for resources: network and computing. If the network of worker
machines has low bandwidth or high latency, computation could be slowed.
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Factors That Affect Results
Some factors may affect numerical results when using parallel processing.
There are more caveats related to parfor listed in the “Limitations” section of
the Parallel Computing Toolbox documentation.

• Persistent or global variables. If your objective or constraint functions use
persistent or global variables, these variables may take different values
on different worker processors. Furthermore, they may not be cleared
properly on the worker processors.

• Accessing external files. External files may be accessed in an unpredictable
fashion during a parallel computation. The order of computations is not
guaranteed during parallel processing, so external files may be accessed in
unpredictable order, leading to unpredictable results.

• Accessing external files. If two or more processors try to read an external
file simultaneously, the file may become locked, leading to a read error, and
halting the execution of the optimization.

• If your objective function calls Simulink, results may be unreliable with
parallel gradient estimation.

• Noncomputational functions, such as input, plot, and keyboard, might
behave badly when used in objective or constraint functions. When called
in a parfor loop, these functions are executed on worker machines. This
can cause a worker to become nonresponsive, since it is waiting for input.

• parfor does not allow break or return statements.

Searching for Global Optima
To search for global optima, one approach is to evaluate a solver from a
variety of initial points. If you distribute those evaluations over a number
of processors using the parfor function, you disable parallel gradient
estimation, since parfor loops cannot be nested. Your optimization usually
runs more quickly if you distribute the evaluations over all the processors,
rather than running them serially with parallel gradient estimation, so
disabling parallel estimation probably won’t slow your computation. If you
have more processors than initial points, though, it is not clear whether it is
better to distribute initial points or to enable parallel gradient estimation.
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If you have a Global Optimization Toolbox license, you can use the MultiStart
solver to examine multiple start points in parallel. See “Parallel Computing”
and “Parallel MultiStart” in the Global Optimization Toolbox documentation.
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ktrlink: An Interface to KNITRO Libraries

In this section...

“What Is ktrlink?” on page 8-2

“Installation and Configuration” on page 8-2

“Using ktrlink to Optimize” on page 8-4

“Setting Options” on page 8-8

“Sparse Matrix Considerations” on page 8-9

What Is ktrlink?
ktrlink calls Ziena Optimization’s KNITRO® libraries in order to perform an
optimization. ktrlink can address constrained and unconstrained problems.
To use ktrlink, you must purchase a copy of KNITRO libraries from Ziena
Optimization, Inc. (http://www.ziena.com/).

Use ktrlink the same as any other Optimization Toolbox function.

ktrlink’s syntax is similar to fmincon’s. The main differences are:

• ktrlink has additional options input for KNITRO libraries so you can
access its options.

• ktrlink has no provision for obtaining a returned Hessian or gradient,
since KNITRO software doesn’t return them.

• Sparse matrix representations differ between KNITRO software and
MATLAB.

Furthermore, many returned flags and messages differ from fmincon’s,
because they are returned directly from KNITRO libraries.

Installation and Configuration
The system requirements for MATLAB and KNITRO software may differ.
Check the system requirements for both products before attempting to use
ktrlink. For recent and planned MATLAB platform support, see
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http://www.mathworks.com/support/sysreq/roadmap.html

Optimization Toolbox software version 6 works with versions 6,
7, and 8 of KNITRO libraries. Contact Ziena Optimization, Inc.
(http://www.ziena.com/) if you have questions regarding other versions of
the KNITRO libraries.

Perform the following steps to configure your system to use ktrlink:

1 Install MATLAB and the KNITRO libraries on your system.

2 Set the system path to include the KNITRO libraries (see “Setting the
System Path to Include KNITRO Libraries” on page 8-3). Make sure to
perform this step before starting MATLAB.

3 Start MATLAB.

Setting the System Path to Include KNITRO Libraries
In order to use ktrlink, you need to tell MATLAB where the KNITRO
binary file (libknitro.so, libknitro.dylib, knitro.dll, or a similar file)
resides. You do this by setting a system-wide environment variable. Enter
the following system-level commands. Replace <file_absolute_path> with
the full path to your KNITRO libraries:

• Linux:

setenv LD_LIBRARY_PATH <file_absolute_path>:$LD_LIBRARY_PATH

• Macintosh:

1 Launch Terminal, available in Applications > Utilities.

2 Determine the shell:

echo $SHELL

3 Set the path:

• If shell is bash:

export DYLD_LIBRARY_PATH=<file_absolute_path>:$DYLD_LIBRARY_PATH
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• If shell is csh or tcsh:

setenv DYLD_LIBRARY_PATH=<file_absolute_path>:$DYLD_LIBRARY_PATH

4 Launch MATLAB by entering matlab in Terminal. (Launching
MATLAB by clicking an icon can lose the path to the KNITRO binary
file.)

Optional: to set the path permanently:

- In bash, add the export line in step 3 to $HOME/.profile.

- In csh or tcsh, add the setenv line in step 3 to $HOME/.cshrc.

• Windows:

1 At the Windows desktop, right-click My Computer (Windows XP) or
Computer (Vista or Windows 7).

2 Select Properties.

3 Click the Advanced tab (Windows XP) or Advanced System Settings
(Vista or Windows 7).

4 Click Environment Variables.

5 Under System variables, edit the Path variable to add the KNITRO
library folder.

Check if the installation was successful by starting MATLAB and running
the following command:

[x fval] = ktrlink(@(x)cos(x),1)

If you receive an error message, check your system path, and make sure the
KNITRO libraries are on the path. When installed correctly, ktrlink returns
a long message, ending with x = 3.1416, fval = -1.

Using ktrlink to Optimize
1 This example uses the same constraint function as the example in
“Nonlinear Constraints” on page 2-37. The constraint function is the
intersection of the interior of an ellipse with the region above a parabola:

function [c ceq gradc gradceq]=ellipseparabola(x)
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% Inside the ellipse bounded by (-3<x<3),(-2<y<2)
% Above the line y=x^2-1
c(1) = x(1)^2/9 + x(2)^2/4 - 1;% ellipse
c(2) = x(1)^2 - x(2) - 1;% parabola
ceq = [];

if nargout > 2
gradc = [2*x(1)/9, 2*x(1);...

x(2)/2, -1];
gradceq = [];

end

2 The objective function is a tilted sinh:

function [f gradf]=sinhtilt(x)

A=[2,1;1,2];
m=[1,1];
f=sinh(x'*A*x/100) + sinh(m*A*x/10);

if nargout > 1
gradf=cosh(x'*A*x/100)*(A*x)/50;
gradf=gradf+cosh(m*A*x/10)*[3;3]/10;

end

3 Set the options so that ktrlink has iterative display and uses the gradients
included in the objective and constraint functions:

ktropts = optimoptions('ktrlink','Display','iter',...
'GradConstr','on','GradObj','on');

4 Run the optimization starting at [0;0], using the ktropts options:

[x fval flag] = ktrlink(@sinhtilt,[0;0],...
[],[],[],[],[],[],@ellipseparabola,ktropts)

KNITRO software returns the following output:

======================================

Trial Ziena License (NOT FOR COMMERCIAL USE)

KNITRO 8.1.0

Ziena Optimization
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======================================

KNITRO presolve eliminated 0 variables and 0 constraints.

algorithm: 1

hessopt: 2

honorbnds: 1

maxit: 10000

outlev: 4

KNITRO changing bar_switchrule from AUTO to 2.

KNITRO changing bar_murule from AUTO to 4.

KNITRO changing bar_initpt from AUTO to 2.

KNITRO changing bar_penaltyrule from AUTO to 2.

KNITRO changing bar_penaltycons from AUTO to 1.

KNITRO changing linsolver from AUTO to 2.

Problem Characteristics

-----------------------

Objective goal: Minimize

Number of variables: 2

bounded below: 0

bounded above: 0

bounded below and above: 0

fixed: 0

free: 2

Number of constraints: 2

linear equalities: 0

nonlinear equalities: 0

linear inequalities: 0

nonlinear inequalities: 2

range: 0

Number of nonzeros in Jacobian: 4

Number of nonzeros in Hessian: 3

Iter fCount Objective FeasError OptError ||Step|| CGits

-------- -------- -------------- ---------- ---------- ---------- -------

0 1 0.000000e+000 0.000e+000

1 2 -1.701203e-001 0.000e+000 1.969e-001 4.111e-001 0

2 3 -4.135676e-001 2.440e-001 1.356e-001 6.054e-001 0

3 4 -3.631949e-001 2.037e-002 4.434e-002 1.423e-001 0

8-6



ktrlink: An Interface to KNITRO® Libraries

4 5 -3.608513e-001 3.776e-003 1.680e-002 8.094e-002 0

5 6 -3.604610e-001 1.216e-003 1.494e-003 4.870e-002 0

6 7 -3.601203e-001 2.694e-006 1.630e-004 3.329e-003 0

7 8 -3.601196e-001 0.000e+000 4.840e-007 1.241e-005 0

EXIT: Locally optimal solution found.

Final Statistics

----------------

Final objective value = -3.60119566305939e-001

Final feasibility error (abs / rel) = 0.00e+000 / 0.00e+000

Final optimality error (abs / rel) = 4.84e-007 / 4.84e-007

# of iterations = 7

# of CG iterations = 0

# of function evaluations = 8

# of gradient evaluations = 8

Total program time (secs) = 0.097 ( 0.218 CPU time)

Time spent in evaluations (secs) = 0.067

===============================================================================

x =

-0.5083

-0.7416

fval =

-0.3601

flag =

0

Note Exit flags have different meanings for ktrlink and fmincon. Flag 0 for
KNITRO libraries means the first-order optimality condition was satisfied; for
fmincon, the corresponding flag is 1. For more information about the output,
see the KNITRO documentation at http://www.ziena.com/.

8-7

http://www.ziena.com/


8 External Interface

Setting Options
ktrlink takes up to two options inputs: one in fmincon format, and another
in KNITRO format. You can use either or both types of options. If you use
both types of options, MATLAB reads only four fmincon-format options:
HessFcn, HessMult, HessPattern, and JacobPattern. KNITRO options
override fmincon-format options.

To use KNITRO options, create an options text file, whose format can be
found in the KNITRO documentation. For example, if you have a KNITRO
options file named knitropts, and an fmincon-format options structure
named ktropts, you can pass them both by calling ktrlink like this:

[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,ktropts,'knitropts')

If knitropts resides in a different folder, pass the path to the file. For
example:

[x fval] = ktrlink(@bigtoleft,[-1,-1,-1],...
[],[],[],[],[],[],@twocone,ktropts,...
'C:\Documents\Knitro\knitropts')

The following shows how fmincon-format options are mapped to KNITRO
options.

fmincon Option KNITRO Option Default Value

Algorithm algorithm 'interior-point'

AlwaysHonorConstraints honorbounds 'bounds'

Display outlev 'none'

FinDiffType gradopt 'forward'

GradConstr gradopt 'off'

GradObj gradopt 'off'

HessFcn hessopt [ ]

MaxIter maxit 10000

TolFun opttol 1.00E–06

TolX xtol 1.00E–15
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fmincon Option KNITRO Option Default Value

Hessian, LBFGS pairs hessopt, lmsize 'bfgs'

HessMult hessopt [ ]

HessPattern [ ]

InitBarrierParam bar_initmu 0.1

InitTrustRegionRadius delta sqrt(numberOfVariables)

JacobPattern [ ]

MaxProjCGIter maxcgit 2*(numberOfVariables–numberOfEqualities)

ObjectiveLimit objrange –1.0E20

ScaleProblem scale 'obj-and-constr'

SubProblemAlgorithm algorithm 'ldl-factorization'

TolCon feastol 1.00E-06

Note KNITRO libraries allow you to pass simultaneously either the
gradients of the objective function and all nonlinear constraints, or no
gradients. Therefore, setting GradObj = 'on' and GradConstr = 'off' is
inconsistent. If you attempt to pass inconsistent options, ktrlink warns you,
and treats all gradients as if they had not been passed.

Sparse Matrix Considerations
When the Hessian of the Lagrangian is sparse, or the Jacobian of the
nonlinear constraints is sparse, ktrlink makes use of the sparsity structure
to speed the optimization and use less memory doing so.

ktrlink handles sparse matrices differently than other MATLAB functions.
If you choose to use sparse matrices, ktrlink requires a sparsity pattern
for nonlinear constraint Jacobians and for Hessians. The next two sections
give the details of the sparsity patterns for nonlinear constraint Jacobians
and for Hessians.
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Sparsity Pattern for Nonlinear Constraints
The sparsity pattern for constraint Jacobians is a matrix. You pass the matrix
as the JacobPattern option. The structure of the matrix follows.

Let c denote the vector of m nonlinear inequality constraints, and let
ceq denote the vector of m2 nonlinear equality constraints. If there are n
dimensions, the Jacobian is an (m + m2)-by-n matrix. The Jacobian pattern
J is
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In other words, the ith row of the Jacobian pattern corresponds to the
gradient of ci. Inequality gradients lie above equality gradients (they have
lower row numbers).

All that matters for the Jacobian pattern is whether or not the entries are
zero. You can pass single-precision numbers, doubles, or logical true or false.
You can pass the sparsity pattern as a MATLAB sparse matrix. If you have
a large sparse matrix of constraints, it is more efficient to pass the pattern
as a sparse matrix. Linear constraint matrices are automatically passed as
sparse matrices.

The gradient of the constraints, calculated in the constraint function, has the
transpose of the Jacobian pattern. For more information about the form of
constraint gradients, see “Nonlinear Constraints” on page 2-37.

Sparsity Pattern for Hessians
The Hessian is the matrix of second derivatives of the Lagrangian:
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H
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2 2 2
 

Give the matrix H as a full or sparse matrix of zero and nonzero elements.
The elements can be single-precision numbers, doubles, or logical true or false.

The Hessian is a symmetric matrix. You can pass just the upper triangular
pattern, or pass the whole matrix pattern.
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9 Argument and Options Reference

Function Arguments

In this section...

“Input Arguments” on page 9-2

“Output Arguments” on page 9-5

Input Arguments
Argument Description Used by Functions

A, b The matrix A and vector b are,
respectively, the coefficients of the
linear inequality constraints and
the corresponding right-side vector:
A*x b.

bintprog, fgoalattain, fmincon,
fminimax, fseminf, linprog,
lsqlin, quadprog

Aeq, beq The matrix Aeq and vector beq are,
respectively, the coefficients of the
linear equality constraints and the
corresponding right-side vector:
Aeq*x = beq.

bintprog, fgoalattain, fmincon,
fminimax, fseminf, linprog,
lsqlin, quadprog

C, d The matrix C and vector d are,
respectively, the coefficients of the
over or underdetermined linear
system and the right-side vector to
be solved.

lsqlin, lsqnonneg

f The vector of coefficients for the
linear term in the linear equation
f'*x or the quadratic equation
x'*H*x+f'*x.

bintprog, linprog, quadprog

fun The function to be optimized. fun
is either a function handle to a file
or is an anonymous function. See
the individual function reference
pages for more information on fun.

fgoalattain, fminbnd, fmincon,
fminimax, fminsearch, fminunc,
fseminf, fsolve, fzero,
lsqcurvefit, lsqnonlin
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Argument Description Used by Functions

goal Vector of values that the objectives
attempt to attain. The vector is
the same length as the number of
objectives.

fgoalattain

H The matrix of coefficients for the
quadratic terms in the quadratic
equation x'*H*x+f'*x. H must be
symmetric.

quadprog

lb, ub Lower and upper bound vectors
(or matrices). The arguments
are normally the same size as x.
However, if lb has fewer elements
than x, say only m, then only the
first m elements in x are bounded
below; upper bounds in ub can
be defined in the same manner.
You can also specify unbounded
variables using -Inf (for lower
bounds) or Inf (for upper bounds).
For example, if lb(i) = -Inf, the
variable x(i) is unbounded below.

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, quadprog

nonlcon The function that computes the
nonlinear inequality and equality
constraints. “Passing Extra
Parameters” on page 2-53 explains
how to parameterize the function
nonlcon, if necessary.

See the individual reference pages
for more information on nonlcon.

fgoalattain, fmincon, fminimax

ntheta The number of semi-infinite
constraints.

fseminf
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Argument Description Used by Functions

options A structure that defines options
used by the optimization functions.
For information about the
options, see “Optimization Options
Reference” on page 9-7 or the
individual function reference
pages.

All functions

seminfcon The function that computes the
nonlinear inequality and equality
constraints and the semi-infinite
constraints. seminfcon is the
name of a function file or MEX-file.
“Passing Extra Parameters”
on page 2-53 explains how to
parameterize seminfcon, if
necessary.

See the function reference pages
for fseminf for more information
on seminfcon.

fseminf

weight A weighting vector to control
the relative underattainment or
overattainment of the objectives.

fgoalattain

xdata, ydata The input data xdata and the
observed output data ydata that
are to be fitted to an equation.

lsqcurvefit

x0 Starting point (a scalar, vector or
matrix).

(For fzero, x0 can also be a
two-element vector representing
a finite interval that is known to
contain a zero.)

All functions except fminbnd

x1, x2 The interval over which the
function is minimized.

fminbnd
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Output Arguments
Argument Description Used by Functions

attainfactor The attainment factor at the
solution x.

fgoalattain

exitflag An integer identifying the reason
the optimization algorithm
terminated. See the function
reference pages for descriptions of
exitflag specific to each function,
and “Exit Flags and Exit Messages”
on page 3-3.

You can also return a message
stating why an optimization
terminated by calling the
optimization function with
the output argument output and
then displaying output.message.

All functions

fval The value of the objective function
fun at the solution x.

bintprog, fgoalattain, fminbnd,
fmincon, fminimax, fminsearch,
fminunc, fseminf, fsolve, fzero,
linprog, quadprog

grad The value of the gradient of fun
at the solution x. If fun does not
compute the gradient, grad is a
finite-differencing approximation
of the gradient.

fmincon, fminunc

hessian The value of the Hessian of fun
at the solution x. For large-scale
methods, if fun does not compute
the Hessian, hessian is a
finite-differencing approximation
of the Hessian. For medium-scale
methods, hessian is the value of
the Quasi-Newton approximation
to the Hessian at the solution x.
See “Hessian” on page 3-28.

fmincon, fminunc

9-5



9 Argument and Options Reference

Argument Description Used by Functions

jacobian The value of the Jacobian of fun
at the solution x. If fun does not
compute the Jacobian, jacobian is
a finite-differencing approximation
of the Jacobian.

lsqcurvefit, lsqnonlin, fsolve

lambda The Lagrange multipliers at the
solution x, see “LagrangeMultiplier
Structures” on page 3-27. lambda
is a structure where each field
is for a different constraint type.
For structure field names, see
individual function descriptions.
(For lsqnonneg, lambda is simply a
vector, as lsqnonneg only handles
one kind of constraint.)

fgoalattain, fmincon, fminimax,
fseminf, linprog, lsqcurvefit,
lsqlin, lsqnonlin, lsqnonneg,
quadprog

maxfval max{fun(x)} at the solution x. fminimax

output An output structure that contains
information about the results of
the optimization, see “Output
Structures” on page 3-26. For
structure field names, see
individual function descriptions.

All functions

residual The value of the residual at the
solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

resnorm The value of the squared 2-norm of
the residual at the solution x.

lsqcurvefit, lsqlin, lsqnonlin,
lsqnonneg

x The solution found by the
optimization function. If exitflag
> 0, then x is a solution; otherwise,
x is the value of the optimization
routine when it terminated
prematurely.

All functions
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Optimization Options Reference

In this section...

“Optimization Options” on page 9-7

“Output Function” on page 9-21

“Plot Functions” on page 9-30

Optimization Options
The following table describes optimization options. Create options using the
optimoptions function, or optimset for fminbnd, fminsearch, fzero, or
lsqnonneg.

See the individual function reference pages for information about available
option values and defaults.

The default values for the options vary depending on which optimization
function you call with options as an input argument. You can determine
the default option values for any of the optimization functions by entering
optimoptions(@solvername) or the equivalent optimoptions('solvername').
For example,

optimoptions(@fmincon)

returns a list of the options and the default values for the default
trust-region-reflective fmincon algorithm. To find the default values for
another fmincon algorithm, set the Algorithm option. For example,

opts = optimoptions(@fmincon,'Algorithm','sqp')
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Optimization Options

Option Name Description Used by Functions

Algorithm Chooses the algorithm used by the
solver.

fmincon, fminunc,
fsolve, linprog,
lsqcurvefit, lsqlin,
lsqnonlin, quadprog

AlwaysHonorConstraints The default 'bounds' ensures that
bound constraints are satisfied at every
iteration. Turn off by setting to 'none'.

fmincon

BranchingRule Rule for choosing the component for
branching:
• 'maxpscost' — The fractional
component with maximum
pseudocost. See “Branch and
Bound” on page 6-161.

• 'mostfractional' — The
component whose fractional
part is closest to 1/2.

• 'maxfun' — The fractional
component with maximal
corresponding component in
the absolute value of objective vector
f.

intlinprog

BranchStrategy Strategy bintprog uses to select
branch variable.

bintprog

CutGeneration Level of cut generation (see “Cut
Generation” on page 6-160):

• 'none' — No cuts. Makes
CutGenerationMaxIter irrelevant.

• 'basic'— Normal cut generation.

• 'intermediate' — Use more cut
types.

• 'advanced'— Use most cut types.

intlinprog
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Optimization Options (Continued)

Option Name Description Used by Functions

CutGenMaxIter Number of passes through all cut
generation methods before entering
the branch-and-bound phase, an
integer from 1 through 50. Disable
cut generation by setting the
CutGeneration option to 'none'.

intlinprog

DerivativeCheck Compare user-supplied analytic
derivatives (gradients or Jacobian,
depending on the selected solver) to
finite differencing derivatives.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

Diagnostics Display diagnostic information about
the function to be minimized or solved.

All but fminbnd,
fminsearch, fzero,
and lsqnonneg

DiffMaxChange Maximum change in variables for finite
differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

DiffMinChange Minimum change in variables for finite
differencing.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin
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Optimization Options (Continued)

Option Name Description Used by Functions

Display Level of display.

• 'off' displays no output.

• 'iter' displays output at each
iteration, and gives the default exit
message.

• 'iter-detailed' displays output
at each iteration, and gives the
technical exit message.

• 'notify' displays output only if the
function does not converge, and gives
the default exit message.

• 'notify-detailed' displays output
only if the function does not converge,
and gives the technical exit message.

• 'final' displays just the final
output, and gives the default exit
message.

• 'final-detailed' displays just the
final output, and gives the technical
exit message.

All. See the individual
function reference
pages for the values
that apply.
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Optimization Options (Continued)

Option Name Description Used by Functions

FinDiffRelStep Scalar or vector step size factor. When
you set FinDiffRelStep to a vector v,
forward finite differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta =
v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to
a vector. The default is sqrt(eps)
for forward finite differences, and
eps^(1/3) for central finite differences.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

FinDiffType Finite differences, used to estimate
gradients, are either 'forward' (the
default) , or 'central' (centered),
which takes twice as many function
evaluations but should be more
accurate. 'central' differences might
violate bounds during their evaluation
in fmincon interior-point evaluations if
the AlwaysHonorConstraints option is
set to 'none'.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin
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Optimization Options (Continued)

Option Name Description Used by Functions

FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, NaN, or Inf.

Note FunValCheck does not return an
error for Inf when used with fminbnd,
fminsearch, or fzero, which handle
Inf appropriately.

'off' displays no error.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, lsqcurvefit,
lsqnonlin

GoalsExactAchieve Specify the number of objectives
required for the objective fun to equal
the goal goal. Objectives should be
partitioned into the first few elements
of F.

fgoalattain

GradConstr User-defined gradients for the
nonlinear constraints.

fgoalattain, fmincon,
fminimax

GradObj User-defined gradients for the objective
functions.

fgoalattain, fmincon,
fminimax, fminunc,
fseminf

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page 10-49).

fmincon

Hessian If 'user-supplied', function uses
user-defined Hessian or Hessian
information (when using HessMult),
for the objective function. If 'off',
function approximates the Hessian
using finite differences.

fmincon, fminunc
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Optimization Options (Continued)

Option Name Description Used by Functions

HessMult Handle to a user-supplied Hessian
multiply function. For fmincon, ignored
unless Hessian is 'user-supplied' or
'on'.

fmincon, fminunc,
quadprog

HessPattern Sparsity pattern of the Hessian for
finite differencing. The size of the
matrix is n-by-n, where n is the number
of elements in x0, the starting point.

fmincon, fminunc

HessUpdate Quasi-Newton updating scheme. fminunc

Heuristics Algorithm for searching for feasible
points (see “Heuristics for Finding
Feasible Solutions” on page 6-161):

• 'none'

• 'rss'

• 'round'

• 'rins'

intlinprog

HeuristicsMaxNodes Strictly positive integer that bounds
the number of nodes intlinprog can
explore in its branch-and-bound search
for feasible points. See “Heuristics for
Finding Feasible Solutions” on page
6-161.

intlinprog

InitBarrierParam Initial barrier value. fmincon

InitialHessMatrix Initial quasi-Newton matrix. fminunc

InitialHessType Initial quasi-Newton matrix type. fminunc

InitTrustRegionRadius Initial radius of the trust region. fmincon
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Optimization Options (Continued)

Option Name Description Used by Functions

IPPreprocess Types of integer preprocessing (see
“Mixed-Integer ProgramPreprocessing”
on page 6-159):

• 'none' — Use very few integer
preprocessing steps.

• 'basic'— Use a moderate number
of integer preprocessing steps.

• 'advanced' — Use all available
integer preprocessing steps.

intlinprog

Jacobian If 'on', function uses user-defined
Jacobian or Jacobian information
(when using JacobMult), for the
objective function. If 'off', function
approximates the Jacobian using finite
differences.

fsolve, lsqcurvefit,
lsqnonlin

JacobMult User-defined Jacobian multiply
function. Ignored unless Jacobian is
'on' for fsolve, lsqcurvefit, and
lsqnonlin.

fsolve, lsqcurvefit,
lsqlin, lsqnonlin

JacobPattern Sparsity pattern of the Jacobian for
finite differencing. The size of the
matrix is m-by-n, where m is the number
of values in the first argument returned
by the user-specified function fun, and
n is the number of elements in x0, the
starting point.

fsolve, lsqcurvefit,
lsqnonlin

LargeScale

Use Algorithm instead

Use large-scale algorithm if possible. fminunc, fsolve,
linprog, lsqcurvefit,
lsqlin, lsqnonlin
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Optimization Options (Continued)

Option Name Description Used by Functions

LPMaxIter Strictly positive integer, the maximum
number of simplex algorithm iterations
per node during the branch-and-bound
process.

intlinprog

LPPreprocess Type of preprocessing for the solution to
the relaxed linear program (see “Linear
Program Preprocessing” on page 6-158):

• 'none'— No preprocessing.

• 'basic'— Use preprocessing.

intlinprog

MaxFunEvals Maximum number of function
evaluations allowed.

fgoalattain,
fminbnd, fmincon,
fminimax, fminsearch,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

MaxIter Maximum number of iterations
allowed.

All but fzero and
lsqnonneg

MaxNodes Strictly positive integer that is the
maximum number of nodes the solver
explores in its branch-and-bound
process.

bintprog, intlinprog

MaxNumFeasPoints Strictly positive integer. intlinprog
stops if it finds MaxNumFeasPoints
integer feasible points.

intlinprog

MaxPCGIter Maximum number of iterations of
preconditioned conjugate gradients
method allowed.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog
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Optimization Options (Continued)

Option Name Description Used by Functions

MaxProjCGIter A tolerance for the number of projected
conjugate gradient iterations; this is
an inner iteration, not the number of
iterations of the algorithm.

fmincon

MaxRLPIter Maximum number of iterations of
linear programming relaxation method
allowed.

bintprog

MaxSQPIter Maximum number of iterations of
sequential quadratic programming
method allowed.

fgoalattain, fmincon,
fminimax

MaxTime Maximum amount of time in seconds
allowed for the algorithm.

bintprog, intlinprog

MeritFunction Use goal attainment/minimax merit
function (multiobjective) vs. fmincon
(single objective).

fgoalattain,
fminimax

MinAbsMax Number of F(x) to minimize the worst
case absolute values.

fminimax

NodeDisplayInterval Node display interval for bintprog. bintprog

NodeSearchStrategy Search strategy that bintprog uses. bintprog

NodeSelection Choose the node to explore next.
• 'simplebestproj' — Best
projection. See “Branch and
Bound” on page 6-161.

• 'minobj' — Explore the node with
the minimum objective function.

• 'mininfeas' — Explore the node
with the minimal sum of integer
infeasibilities. See “Branch and
Bound” on page 6-161.

intlinprog

ObjectiveCutoff Real greater than -Inf. The default is
Inf.

intlinprog
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Optimization Options (Continued)

Option Name Description Used by Functions

ObjectiveLimit If the objective function value goes
below ObjectiveLimit and the iterate
is feasible, then the iterations halt.

fmincon, fminunc,
quadprog

OutputFcn Specify one or more user-defined
functions that the optimization
function calls at each iteration. See
“Output Function” on page 9-21.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, lsqcurvefit,
lsqnonlin

PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your
own.

• @optimplotx plots the current point

• @optimplotfunccount plots the
function count

• @optimplotfval plots the function
value

• @optimplotconstrviolation plots
the maximum constraint violation

• @optimplotresnorm plots the norm
of the residuals

• @optimplotfirstorderopt plots the
first-order of optimality

• @optimplotstepsize plots the step
size

See “Plot Functions” on page 9-30.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero, lsqcurvefit,
lsqnonlin. See the
individual function
reference pages for the
values that apply.
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Optimization Options (Continued)

Option Name Description Used by Functions

PrecondBandWidth Upper bandwidth of preconditioner for
PCG. Setting to 'Inf' uses a direct
factorization instead of CG.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

RelLineSrchBnd Relative bound on line search step
length.

fgoalattain, fmincon,
fminimax, fseminf

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active.

fgoalattain, fmincon,
fminimax, fseminf

RelObjThreshold Nonnegative real. intlinprog changes
the current feasible solution only
when it locates another with an
objective function value that is at
least RelObjThreshold lower: (fold –
fnew)/(1 + fold) > RelObjThreshold.

intlinprog

RootLPAlgorithm Algorithm for solving linear programs:
• 'dual-simplex' — Dual simplex
algorithm

• 'primal-simplex' — Primal
simplex algorithm

intlinprog

RootLPMaxIter Nonnegative integer that is the
maximum number of simplex algorithm
iterations to solve the initial linear
programming problem.

intlinprog
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Optimization Options (Continued)

Option Name Description Used by Functions

ScaleProblem For fmincon interior-point and
sqp algorithms, 'obj-and-constr'
causes the algorithm to normalize all
constraints and the objective function
by their initial values. Disable by
setting to the default 'none'.

For the other solvers, when
using the Algorithm option
'levenberg-marquardt', setting the
ScaleProblem option to 'jacobian'
sometimes helps the solver on
badly-scaled problems.

fmincon, fsolve,
lsqcurvefit,
lsqnonlin, quadprog

Simplex

Use Algorithm instead

If 'on', function uses the simplex
algorithm.

linprog

SubproblemAlgorithm Determines how the iteration step is
calculated.

fmincon

TolCon Tolerance on the constraint violation. bintprog,
fgoalattain, fmincon,
fminimax, fseminf,
intlinprog, quadprog

TolConSQP Constraint violation tolerance for the
inner SQP iteration.

fgoalattain, fmincon,
fminimax, fseminf

TolFun Termination tolerance on the function
value.

bintprog,
fgoalattain,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
linprog (interior-point
only), lsqcurvefit,
lsqlin (trust-region-reflective
only), lsqnonlin,
quadprog
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Optimization Options (Continued)

Option Name Description Used by Functions

TolFunLP Nonnegative real where reduced costs
must exceed TolFunLP for a variable to
be taken into the basis.

intlinprog

TolGapAbs Nonnegative real. intlinprog stops if
the difference between the internally
calculated upper (U) and lower (L)
bounds on the objective function is less
than or equal to TolGapAbs:U L <=
TolGapAbs.

intlinprog

TolGapRel Real from 0 through 1. intlinprog
stops if the relative difference between
the internally calculated upper (U)
and lower (L) bounds on the objective
function is less than or equal to
TolGapRel:(U L) / (abs(U) + 1)
<= TolGapRel.

intlinprog

TolInteger Real from 1e-6 through 1e-3, where
the maximum deviation from integer
that a component of the solution x can
have and still be considered an integer.
TolInteger is not a stopping criterion.

intlinprog

TolPCG Termination tolerance on the PCG
iteration.

fmincon, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

TolProjCG A relative tolerance for projected
conjugate gradient algorithm; this is
for an inner iteration, not the algorithm
iteration.

fmincon

TolProjCGAbs Absolute tolerance for projected
conjugate gradient algorithm; this is
for an inner iteration, not the algorithm
iteration.

fmincon
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Optimization Options (Continued)

Option Name Description Used by Functions

TolRLPFun Termination tolerance on the function
value of a linear programming
relaxation problem.

bintprog

TolX Termination tolerance on x. All functions except
the medium-scale
algorithms for
linprog, lsqlin, and
quadprog

TolXInteger Tolerance within which bintprog
considers the value of a variable to be
an integer.

bintprog

TypicalX Array that specifies typical magnitude
of array of parameters x. The size
of the array is equal to the size of
x0, the starting point. Primarily for
scaling finite differences for gradient
estimation.

fgoalattain, fmincon,
fminimax, fminunc,
fsolve, lsqcurvefit,
lsqlin, lsqnonlin,
quadprog

UseParallel When true, applicable solvers estimate
gradients in parallel. Disable by setting
to false.

fgoalattain, fmincon,
fminimax.

Output Function
The Outputfcn field of options specifies one or more functions that an
optimization function calls at each iteration. Typically, you might use an
output function to plot points at each iteration or to display optimization
quantities from the algorithm. Using an output function you can view, but not
set, optimization quantities. To set up an output function, do the following:

1 Write the output function as a function file or local function.

2 Use optimoptions to set the value of Outputfcn to be a function handle,
that is, the name of the function preceded by the @ sign. For example, if
the output function is outfun.m, the command
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options = optimoptions(@solvername,'OutputFcn', @outfun);

specifies OutputFcn to be the handle to outfun. To specify more than one
output function, use the syntax

options = optimoptions(@solvername,'OutputFcn',{@outfun, @outfun2});

3 Call the optimization function with options as an input argument.

See “Output Functions” on page 3-37 for an example of an output function.

“Passing Extra Parameters” on page 2-53 explains how to parameterize the
output function OutputFcn, if necessary.

Structure of the Output Function
The function definition line of the output function has the following form:

stop = outfun(x, optimValues, state)

where

• x is the point computed by the algorithm at the current iteration.

• optimValues is a structure containing data from the current iteration.
“Fields in optimValues” on page 9-22 describes the structure in detail.

• state is the current state of the algorithm. “States of the Algorithm” on
page 9-29 lists the possible values.

• stop is a flag that is true or false depending on whether the optimization
routine should quit or continue. See “Stop Flag” on page 9-29 for more
information.

The optimization function passes the values of the input arguments to outfun
at each iteration.

Fields in optimValues
The following table lists the fields of the optimValues structure. A particular
optimization function returns values for only some of these fields. For each
field, the Returned by Functions column of the table lists the functions that
return the field.
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Corresponding Output Arguments. Some of the fields of optimValues
correspond to output arguments of the optimization function. After the final
iteration of the optimization algorithm, the value of such a field equals
the corresponding output argument. For example, optimValues.fval
corresponds to the output argument fval. So, if you call fmincon with an
output function and return fval, the final value of optimValues.fval equals
fval. The Description column of the following table indicates the fields that
have a corresponding output argument.

Command-Line Display. The values of some fields of optimValues are
displayed at the command line when you call the optimization function with
the Display field of options set to 'iter', as described in “Iterative Display”
on page 3-17. For example, optimValues.fval is displayed in the f(x)
column. The Command-Line Display column of the following table indicates
the fields that you can display at the command line.

Some optimValues fields apply only to specific algorithms:

• AS — active-set

• D — trust-region-dogleg

• IP — interior-point

• LM — levenberg-marquardt

• Q — quasi-newton

• SQP — sqp

• TR — trust-region

• TRR — trust-region-reflective
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optimValues Fields

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

attainfactor Attainment factor for
multiobjective problem.
For details, see “Goal
Attainment Method” on
page 6-237.

fgoalattain None

cgiterations Number of conjugate
gradient iterations at
current optimization
iteration.

fmincon (IP, TRR),
fsolve (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

CG-iterations

See “Iterative
Display” on page
3-17.

constrviolation Maximum constraint
violation.

fgoalattain, fmincon,
fminimax, fseminf

Max constraint
or Feasibility

See “Iterative
Display” on page
3-17.

degenerate Measure of degeneracy.
A point is degenerate if

The partial derivative
with respect to one of
the variables is 0 at the
point.

A bound constraint is
active for that variable
at the point.

See “Degeneracy” on
page 9-27.

fmincon (TRR),
lsqcurvefit (TRR),
lsqnonlin (TRR)

None

directionalderivative Directional derivative in
the search direction.

fgoalattain, fmincon
(AS), fminimax,
fminunc (Q), fseminf,
fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

Directional
derivative

See “Iterative
Display” on page
3-17.
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optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

firstorderopt First-order optimality
(depends on algorithm).
Final value equals
optimization
function output
output.firstorderopt.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

First-order
optimality

See “Iterative
Display” on page
3-17.

funccount Cumulative number of
function evaluations.
Final value equals
optimization
function output
output.funcCount.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fsolve, fzero,
fseminf, lsqcurvefit,
lsqnonlin

F-count or
Func-count

See “Iterative
Display” on page
3-17.

fval Function value
at current point.
Final value equals
optimization function
output fval.

fgoalattain, fminbnd,
fmincon, fminimax,
fminsearch, fminunc,
fseminf, fsolve,
fzero

f(x)

See “Iterative
Display” on page
3-17.

gradient Current gradient of
objective function —
either analytic gradient
if you provide it or
finite-differencing
approximation.
Final value equals
optimization function
output grad.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

None

iteration Iteration number —
starts at 0. Final value
equals optimization
function output
output.iterations.

fgoalattain,
fminbnd,fmincon,
fminimax, fminsearch,
fminunc, fsolve,
fseminf, fzero,
lsqcurvefit,
lsqnonlin

Iteration

See “Iterative
Display” on page
3-17.

9-25



9 Argument and Options Reference

optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

lambda The
Levenberg-Marquardt
parameter, lambda,
at the current
iteration. See
“Levenberg-Marquardt
Method” on page 6-205.

fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

Lambda

maxfval Maximum function
value

fminimax None

positivedefinite 0 if algorithm detects
negative curvature while
computing Newton step.

1 otherwise.

fmincon (TRR),
fminunc (TRR), fsolve
(TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

None

procedure Procedure messages. fgoalattain, fminbnd,
fmincon (AS),
fminimax, fminsearch,
fseminf,
fzero

Procedure

See “Iterative
Display” on page
3-17.

ratio Ratio of change in the
objective function to
change in the quadratic
approximation.

fmincon (TRR), fsolve
(TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

None

residual The residual vector.
For fsolve, residual
means the 2-norm of the
residual squared.

lsqcurvefit,
lsqnonlin, fsolve

Residual

See “Iterative
Display” on page
3-17.

resnorm 2-norm of the residual
squared.

lsqcurvefit,
lsqnonlin

Resnorm

See “Iterative
Display” on page
3-17.
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optimValues Fields (Continued)

OptimValues Field
(optimValues.field) Description

Returned by
Functions

Command-Line
Display

searchdirection Search direction. fgoalattain, fmincon
(AS, SQP), fminimax,
fminunc (Q), fseminf,
fsolve (LM),
lsqcurvefit (LM),
lsqnonlin (LM)

None

stepaccept Status of the current
trust-region step.
Returns true if the
current trust-region step
was successful, and false
if the trust-region step
was unsuccessful.

fsolve (D) None

stepsize Current step size
(displacement in
x). Final value
equals optimization
function output
output.stepsize.

fgoalattain,
fmincon, fminimax,
fminunc, fseminf,
fsolve, lsqcurvefit,
lsqnonlin

Step-size or
Norm of Step

See “Iterative
Display” on page
3-17.

trustregionradius Radius of trust region. fmincon (IP, TRR),
fminunc (TR), fsolve
(D, TRR), lsqcurvefit
(TRR), lsqnonlin
(TRR)

Trust-region
radius

See “Iterative
Display” on page
3-17.

Degeneracy. The value of the field degenerate, which measures the
degeneracy of the current optimization point x, is defined as follows. First,
define a vector r, of the same size as x, for which r(i) is the minimum distance
from x(i) to the ith entries of the lower and upper bounds, lb and ub. That is,

r = min(abs(ub-x, x-lb))
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Then the value of degenerate is the minimum entry of the vector
r + abs(grad), where grad is the gradient of the objective function. The
value of degenerate is 0 if there is an index i for which both of the following
are true:

• grad(i) = 0

• x(i) equals the ith entry of either the lower or upper bound.
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States of the Algorithm
The following table lists the possible values for state:

State Description

'init' The algorithm is in the initial state before the first
iteration.

'interrupt' The algorithm is in some computationally expensive
part of the iteration. In this state, the output function
can interrupt the current iteration of the optimization.
At this time, the values of x and optimValues are the
same as at the last call to the output function in which
state=='iter'.

'iter' The algorithm is at the end of an iteration.

'done' The algorithm is in the final state after the last iteration.

The following code illustrates how the output function might use the value of
state to decide which tasks to perform at the current iteration:

switch state
case 'iter'

% Make updates to plot or guis as needed
case 'interrupt'

% Probably no action here. Check conditions to see
% whether optimization should quit.

case 'init'
% Setup for plots or guis

case 'done'
% Cleanup of plots, guis, or final plot

otherwise
end

Stop Flag
The output argument stop is a flag that is true or false. The flag tells the
optimization function whether the optimization should quit or continue. The
following examples show typical ways to use the stop flag.
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Stopping an Optimization Based on Data in optimValues. The output
function can stop an optimization at any iteration based on the current data
in optimValues. For example, the following code sets stop to true if the
directional derivative is less than .01:

function stop = outfun(x,optimValues,state)
stop = false;
% Check if directional derivative is less than .01.
if optimValues.directionalderivative < .01

stop = true;
end

Stopping an Optimization Based on GUI Input. If you design a GUI to
perform optimizations, you can make the output function stop an optimization
when a user clicks a Stop button on the GUI. The following code shows how
to do this, assuming that the Stop button callback stores the value true in
the optimstop field of a handles structure called hObject:

function stop = outfun(x,optimValues,state)
stop = false;
% Check if user has requested to stop the optimization.
stop = getappdata(hObject,'optimstop');

Plot Functions
The PlotFcns field of the options structure specifies one or more functions
that an optimization function calls at each iteration to plot various measures
of progress while the algorithm executes. The structure of a plot function is
the same as that for an output function. For more information on writing and
calling a plot function, see “Output Function” on page 9-21. For an example of
using built-in plot functions, “Using a Plot Function” on page 3-31.

To view a predefined plot function listed for PlotFcns, you can open it in the
MATLAB Editor. For example, to view the file corresponding to the norm of
residuals, enter:

edit optimplotresnorm.m

You can use any predefined plot function as a template for writing a custom
plot function.
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Purpose Solve binary integer programming problems

Equation Solves binary integer programming problems of the form

min
,

,
x

Tf x
A x b

Aeq x beq
x

 such that 
 binary.

⋅ ≤
⋅ =

⎧
⎨
⎪

⎩⎪

f, b, and beq are vectors, A and Aeq are matrices, and the solution x
is required to be a binary integer vector—that is, its entries can only
take on the values 0 or 1.

Syntax x = bintprog(f)
x = bintprog(f,A,b)
x = bintprog(f,A,b,Aeq,beq)
x = bintprog(f,A,b,Aeq,beq,x0)
x = bintprog(f,A,b,Aeq,Beq,x0,options)
x = bintprog(problem)
[x,fval] = bintprog(...)
[x,fval,exitflag] = bintprog(...)
[x,fval,exitflag,output] = bintprog(...)

Description x = bintprog(f) solves the binary integer programming problem

min .
x

Tf x

x = bintprog(f,A,b) solves the binary integer programming problem

min .
x

Tf x A x b such that ⋅ ≤

x = bintprog(f,A,b,Aeq,beq) solves the preceding problem with
the additional equality constraint.

Aeq·x = beq.
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x = bintprog(f,A,b,Aeq,beq,x0) sets the starting point for the
algorithm to x0. If x0 is not in the feasible region, bintprog uses the
default initial point.

x = bintprog(f,A,b,Aeq,Beq,x0,options) minimizes with the
default optimization options replaced by values in options, which you
can create using the function optimoptions.

x = bintprog(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-3.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = bintprog(...) returns fval, the value of the objective
function at x.

[x,fval,exitflag] = bintprog(...) returns exitflag that
describes the exit condition of bintprog. See “Output Arguments” on
page 10-4.

[x,fval,exitflag,output] = bintprog(...) returns a structure
output that contains information about the optimization. See “Output
Arguments” on page 10-4.

Input
Arguments

The following table lists the input arguments for bintprog. “Function
Arguments” on page 9-2 contains general descriptions of input
arguments for optimization functions.

f Vector containing the coefficients of the linear objective
function.

A Matrix containing the coefficients of the linear inequality
constraints A·x≤ b.

b Vector corresponding to the right-hand side of the linear
inequality constraints.

Aeq Matrix containing the coefficients of the linear equality
constraints Aeq·x = beq.
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beq Vector containing the constants of the linear equality
constraints.

x0 Initial point for the algorithm.

options Options for the algorithm.

f Linear objective function vector f

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

x0 Initial point for x

solver 'bintprog'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by bintprog. This section provides specific details
for the arguments exitflag, output, and iterative display.

Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter.

-2 The problem is infeasible.

-4 Number of searched nodes exceeded
options.MaxNodes.

-5 Search time exceeded
options.MaxTime.

exitflag
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-6 Number of iterations the LP-solver
performed at a node to solve the
LP-relaxation problem exceeded
options.MaxRLP.

Structure containing information about the optimization.
The fields of the structure are

iterations Number of iterations taken

nodes Number of nodes searched

time Execution time of the algorithm

algorithm Optimization algorithm used

branchStrategy Strategy used to select branch
variable—see “Options” on page
10-6

nodeSearchStrategy Strategy used to select next node in
search tree—see “Options” on page
10-6

output

message Exit message

bintprog-specific iterative display:

Best lower bound
on obj

Objective function value of LP
relaxation problem that gives the
best current lower bound on the
final objective function value.

Explored nodes Cumulative number of explored
nodes.

Obj of best
integer point

Objective function value of the best
integer point found so far. This
is an upper bound for the final
objective function value.

Iterative
display
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Obj of LP
relaxation

Objective function value of the
linear programming (LP) relaxation
problem.

Relative gap
between bounds

100
1

( )
,

b a
b
−
+

where

• b is the objective function value
of the best integer point.

• a is the best lower bound on the
objective function value.

Unexplored nodes Number of nodes that have been set
up but not yet explored.

Options Optimization options used by bintprog. Use optimoptions to set or
change options. See “Optimization Options Reference” on page 9-7 for
detailed information.

BranchStrategy Strategy the algorithm uses to select the
branch variable in the search tree—see
“Branching” on page 6-148. The choices are

• 'mininfeas'— Choose the variable with
the minimum integer infeasibility (the
variable whose value is closest to 0 or 1,
but not equal to 0 or 1).

• 'maxinfeas'— Choose the variable with
the maximum integer infeasibility (the
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variable whose value is closest to 0.5
(default)).

Diagnostics Display diagnostic information about the
function. The choices are 'on' or the
default, 'off'.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration,
and gives the default exit message.

• 'iter-detailed' displays output at
each iteration, and gives the technical
exit message.

• 'final' (default) displays just the
final output, and gives the default exit
message.

• 'final-detailed' displays just the
final output, and gives the technical exit
message.

MaxIter Maximum number of iterations allowed
(a positive integer). The default is
100000*numberOfVariables

MaxNodes Maximum number of solutions, or nodes,
the function searches (a positive integer).
The default is 1000*numberOfVariables

MaxRLPIter Maximum number of iterations the
LP-solver performs to solve the
LP-relaxation problem at each node
(a positive integer). The default is
100*numberOfVariables
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MaxTime Maximum amount of CPU time in seconds
the function runs (a positive scalar). The
default is 7200.

NodeDisplayInterval Node display interval (a positive integer).
Gives the number of nodes to search
between reporting to the iterative display.
The default is 20.

NodeSearchStrategy Strategy the algorithm uses to select the
next node to search in the search tree—see
“Branching” on page 6-148. The choices are:

• 'df' — Depth-first search strategy. At
each node in the search tree, if there
is a child node one level down in the
tree that has not already been explored,
the algorithm chooses one such child to
search. Otherwise, the algorithm moves
to the node one level up in the tree and
chooses a child node one level down from
that node.

• 'bn'— Best-node search strategy, which
chooses the node with lowest bound on
the objective function (the default).

TolFun Termination tolerance on the function value
(a positive scalar). The default is 1.0e-3.

TolXInteger Tolerance within which the value of a
variable is considered to be integral (a
positive scalar). The default is 1.0e-8.

TolRLPFun Termination tolerance on the function value
of a linear programming relaxation problem
(a positive scalar). The default is 1.0e-6.
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Examples To minimize the function

f(x) = –9x1 – 5x2 – 6x3 – 4x4,

subject to the constraints

6 3 5 2
0 0 1 1
1 0 1 0

0 1 0 1

9
1
0

1

2

3

4

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

≤

x
x
x
x 00

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

,

where x1, x2, x3, and x4 are binary integers, enter the following
commands:

f = [-9; -5; -6; -4];
A = [6 3 5 2; 0 0 1 1; -1 0 1 0; 0 -1 0 1];
b = [9; 1; 0; 0];
x = bintprog(f,A,b)

Optimization terminated.

x =
1
1
0
0

Tips • intlinprog solves more problems than bintprog, and has better
performance. To update your existing bintprog code to use
intlinprog, make the following changes:

- Set intcon to 1:numVars, where numVars is the number of
variables in your problem.

- Set lb to zeros(numVars,1).

- Set ub to ones(numVars,1).
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- Update any relevant options. Use optimoptions to create options
for intlinprog.

- Change your call to bintprog as follows:

[x,fval,exitflag,output] = bintprog(f,A,b,Aeq,Beq,x0,options)
% Change your call to:
[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,Beq,lb,ub,opti

Algorithms bintprog uses a linear programming (LP)-based branch-and-bound
algorithm to solve binary integer programming problems. The algorithm
searches for an optimal solution to the binary integer programming
problem by solving a series of LP-relaxation problems, in which the
binary integer requirement on the variables is replaced by the weaker
constraint 0 ≤ x ≤ 1. The algorithm

• Searches for a binary integer feasible solution

• Updates the best binary integer feasible point found so far as the
search tree grows

• Verifies that no better integer feasible solution is possible by solving
a series of linear programming problems

For more information, see “bintprog Algorithm” on page 6-148

References [1] Wolsey, Laurence A., Integer Programming, John Wiley & Sons,
1998.

[2] Nemhauser, George L. and Laurence A. Wolsey, Integer and
Combinatorial Optimization, John Wiley & Sons, 1988.

[3] Hillier, Frederick S. and Lieberman Gerald J., Introduction to
Operations Research, McGraw-Hill, 2001.

See Also intlinprog | optimoptions | optimtool

How To • “Binary Integer Programming Algorithms” on page 6-148
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• “Optimal Investments Via Binary Integer Programming” on page
6-151
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color

Purpose Column partition for sparse finite differences

Syntax group = color(J,P)

Description group = color(J,P) returns a partition of the column corresponding
to a coloring of the column-intersection graph. GROUP(I) = J means
column I is colored J.

All columns belonging to a color can be estimated in a single finite
difference.
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Purpose Solve multiobjective goal attainment problems

Equation Finds the minimum of a problem specified by

minimize such that
x

F x weight goal
c x

ceq x
A x b,

( )
( )
( )

γ
γ

γ− ⋅ ≤
≤
=

⋅ ≤

0
0

AAeq x beq
lb x ub

⋅ =
≤ ≤

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪ .

weight, goal, b, and beq are vectors, A and Aeq are matrices, and c(x),
ceq(x), and F(x) are functions that return vectors. F(x), c(x), and ceq(x)
can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

Syntax x = fgoalattain(fun,x0,goal,weight)
x = fgoalattain(fun,x0,goal,weight,A,b)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,

... options)
x = fgoalattain(problem)
[x,fval] = fgoalattain(...)
[x,fval,attainfactor] = fgoalattain(...)
[x,fval,attainfactor,exitflag] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
[x,fval,attainfactor,exitflag,output,lambda] = fgoalattain(...)

Description fgoalattain solves the goal attainment problem, which is one
formulation for minimizing a multiobjective optimization problem.
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Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective functions and nonlinear constraint
functions, if necessary.

x = fgoalattain(fun,x0,goal,weight) tries to make the objective
functions supplied by fun attain the goals specified by goal by varying
x, starting at x0, with weight specified by weight.

x = fgoalattain(fun,x0,goal,weight,A,b) solves the goal
attainment problem subject to the linear inequalities A*x b.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq) solves the goal
attainment problem subject to the linear equalities Aeq*x = beq as
well. Set A = [] and b = [] if no inequalities exist.

x = fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub) defines
a set of lower and upper bounds on the design variables in x, so that the
solution is always in the range lb x ub.

Note See “Iterations Can Violate Constraints” on page 2-34.

x =
fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon)
subjects the goal attainment problem to the nonlinear inequalities c(x)
or nonlinear equality constraints ceq(x) defined in nonlcon.
fgoalattain optimizes such that c(x) 0 and ceq(x) = 0. Set lb =
[] and/or ub = [] if no bounds exist.

x =
fgoalattain(fun,x0,goal,weight,A,b,Aeq,beq,lb,ub,nonlcon,
... options) minimizes with the optimization options specified in
options. Use optimoptions to set these options.

x = fgoalattain(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-15.
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Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = fgoalattain(...) returns the values of the objective
functions computed in fun at the solution x.

[x,fval,attainfactor] = fgoalattain(...) returns the
attainment factor at the solution x.

[x,fval,attainfactor,exitflag] = fgoalattain(...) returns a
value exitflag that describes the exit condition of fgoalattain.

[x,fval,attainfactor,exitflag,output] = fgoalattain(...)
returns a structure output that contains information about the
optimization.

[x,fval,attainfactor,exitflag,output,lambda] =
fgoalattain(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into fgoalattain. This section provides
function-specific details for fun, goal, nonlcon, options, weight, and
problem:
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fun The function to be minimized. fun is a function that
accepts a vector x and returns a vector F, the objective
functions evaluated at x. The function fun can be
specified as a function handle for a function file:

x = fgoalattain(@myfun,x0,goal,weight)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x.

fun can also be a function handle for an anonymous
function.

x = fgoalattain(@(x)sin(x.*x),x0,goal,weight);

If the user-defined values for x and F are matrices, they
are converted to a vector using linear indexing.

To make an objective function as near as possible to
a goal value, (i.e., neither greater than nor less than)
use optimoptions to set the GoalsExactAchieve
option to the number of objectives required to be in the
neighborhood of the goal values. Such objectives must
be partitioned into the first elements of the vector F
returned by fun.

If the gradient of the objective function can also be
computed and the GradObj option is 'on', as set by

options = optimoptions('fgoalattain','GradObj','on')

then the function fun must return, in the second output
argument, the gradient value G, a matrix, at x. The
gradient consists of the partial derivative dF/dx of each
F at the point x. If F is a vector of length m and x has
length n, where n is the length of x0, then the gradient G
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of F(x) is an n-by-m matrix where G(i,j) is the partial
derivative of F(j) with respect to x(i) (i.e., the jth
column of G is the gradient of the jth objective function
F(j)).

Note Setting GradObj to 'on' is effective only when
there is no nonlinear constraint, or when the nonlinear
constraint has GradConstr set to 'on' as well. This
is because internally the objective is folded into the
constraints, so the solver needs both gradients (objective
and constraint) supplied in order to avoid estimating a
gradient.

goal Vector of values that the objectives attempt to attain.
The vector is the same length as the number of objectives
F returned by fun. fgoalattain attempts to minimize
the values in the vector F to attain the goal values given
by goal.

nonlcon The function that computes the nonlinear inequality
constraints c(x) 0 and the nonlinear equality
constraints ceq(x) = 0. The function nonlcon accepts a
vector x and returns two vectors c and ceq. The vector c
contains the nonlinear inequalities evaluated at x, and
ceq contains the nonlinear equalities evaluated at x. The
function nonlcon can be specified as a function handle.

x = fgoalattain(@myfun,x0,goal,weight,A,b,Aeq,beq,...

lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)

c = ... % compute nonlinear inequalities at x.

ceq = ... % compute nonlinear equalities at x.
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If the gradients of the constraints can also be computed
and the GradConstr option is 'on', as set by

options = optimoptions('fgoalattain','GradConstr','on')

then the function nonlcon must also return, in
the third and fourth output arguments, GC, the
gradient of c(x), and GCeq, the gradient of ceq(x).
“Nonlinear Constraints” on page 2-37 explains how to
“conditionalize” the gradients for use in solvers that do
not accept supplied gradients.

If nonlcon returns a vector c of m components and x has
length n, where n is the length of x0, then the gradient
GC of c(x) is an n-by-m matrix, where GC(i,j) is the
partial derivative of c(j) with respect to x(i) (i.e., the
jth column of GC is the gradient of the jth inequality
constraint c(j)). Likewise, if ceq has p components,
the gradient GCeq of ceq(x) is an n-by-p matrix, where
GCeq(i,j) is the partial derivative of ceq(j) with
respect to x(i) (i.e., the jth column of GCeq is the
gradient of the jth equality constraint ceq(j)).

Note Setting GradConstr to 'on' is effective only when
GradObj is set to 'on' as well. This is because internally
the objective is folded into the constraint, so the solver
needs both gradients (objective and constraint) supplied
in order to avoid estimating a gradient.
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Note Because Optimization Toolbox functions only
accept inputs of type double, user-supplied objective
and nonlinear constraint functions must return outputs
of type double.

“Passing Extra Parameters” on page 2-53 explains
how to parameterize the nonlinear constraint function
nonlcon, if necessary.

options “Options” on page 10-22 provides the function-specific
details for the options values.

A weighting vector to control the relative
underattainment or overattainment of the objectives
in fgoalattain. When the values of goal are all
nonzero, to ensure the same percentage of under- or
overattainment of the active objectives, set the weighting
function to abs(goal). (The active objectives are the set
of objectives that are barriers to further improvement of
the goals at the solution.)

Note Setting a component of the weight vector to zero
will cause the corresponding goal constraint to be treated
as a hard constraint rather than as a goal constraint. An
alternative method to set a hard constraint is to use the
input argument nonlcon.

weight

When the weighting function weight is positive,
fgoalattain attempts to make the objectives less than
the goal values. To make the objective functions greater
than the goal values, set weight to be negative rather
than positive. To make an objective function as near as
possible to a goal value, use the GoalsExactAchieve
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option and put that objective as the first element of the
vector returned by fun (see the preceding description
of fun and options).

objective Vector of objective functions

x0 Initial point for x

goal Goals to attain

weight Relative importance factors of goals

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fgoalattain'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fgoalattain. This section provides
function-specific details for attainfactor, exitflag, lambda, and
output:
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attainfactor The amount of over- or underachievement of the
goals. attainfactor contains the value of γ at the
solution. If attainfactor is negative, the goals
have been overachieved; if attainfactor is positive,
the goals have been underachieved.

Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Function converged to a solutions
x.

4 Magnitude of the search direction
less than the specified tolerance
and constraint violation less than
options.TolCon

5 Magnitude of directional
derivative less than the specified
tolerance and constraint violation
less than options.TolCon

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals

-1 Stopped by an output function or
plot function.

exitflag

-2 No feasible point was found.
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Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of final line search step
relative to search direction

stepsize Final displacement in x

algorithm Optimization algorithm used

firstorderopt Measure of first-order optimality

constrviolationMaximum of constraint functions

output

message Exit message

Options Optimization options used by fgoalattain. Use optimoptions to set
or change options. See “Optimization Options Reference” on page 9-7
for detailed information.
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DerivativeCheck Compare user-supplied derivatives
(gradients of objective or constraints)
to finite-differencing derivatives. The
choices are 'on' or the default, 'off'.

Diagnostics Display diagnostic information about
the function to be minimized or solved.
The choices are 'on' or the default,
'off'.

DiffMaxChange Maximum change in variables for
finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for
finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display.

• 'off' or 'none' displays no output.

• 'iter' displays output at each
iteration, and gives the default exit
message.

• 'iter-detailed' displays output
at each iteration, and gives the
technical exit message.

• 'notify' displays output only if the
function does not converge, and gives
the default exit message.

• 'notify-detailed' displays output
only if the function does not converge,
and gives the technical exit message.

• 'final' (default) displays just the
final output, and gives the default
exit message.
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• 'final-detailed' displays just the
final output, and gives the technical
exit message.

FinDiffRelStep Scalar or vector step size factor. When
you set FinDiffRelStep to a vector v,
forward finite differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta =
v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to
a vector. The default is sqrt(eps)
for forward finite differences, and
eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate
gradients, are either 'forward'
(default), or 'central' (centered).
'central' takes twice as many
function evaluations, but should be
more accurate.

The algorithm is careful to obey bounds
when estimating both types of finite
differences. So, for example, it could
take a backward, rather than a forward,
difference to avoid evaluating at a point
outside bounds.
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FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. The
default, 'off', displays no error.

GoalsExactAchieve Specifies the number of objectives for
which it is required for the objective fun
to equal the goal goal (a nonnegative
integer). Such objectives should be
partitioned into the first few elements
of F. The default is 0.

GradConstr Gradient for nonlinear constraint
functions defined by the user. When
set to 'on', fgoalattain expects
the constraint function to have four
outputs, as described in nonlcon in
the “Input Arguments” on page 10-15
section. When set to the default, 'off',
gradients of the nonlinear constraints
are estimated by finite differences.

GradObj Gradient for the objective function
defined by the user. See the preceding
description of fun to see how to define
the gradient in fun. Set to 'on' to
have fgoalattain use a user-defined
gradient of the objective function. The
default, 'off', causes fgoalattain
to estimate gradients using finite
differences.

MaxFunEvals Maximum number of function
evaluations allowed (a positive integer).
The default is 100*numberOfVariables.
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MaxIter Maximum number of iterations allowed
(a positive integer). The default is 400.

MaxSQPIter Maximum number of SQP iterations
allowed (a positive integer). The default
is 10*max(numberOfVariables,
numberOfInequalities +
numberOfBounds)

MeritFunction Use goal attainment/minimax merit
function if set to 'multiobj', the
default. Use fmincon merit function if
set to 'singleobj'.

OutputFcn Specify one or more user-defined
functions that an optimization function
calls at each iteration, either as a
function handle or as a cell array of
function handles. The default is none
([]). See “Output Function” on page
9-21.

PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your
own. Pass a function handle or a cell
array of function handles. The default
is none ([]).

• @optimplotx plots the current point

• @optimplotfunccount plots the
function count

• @optimplotfval plots the function
value

• @optimplotconstrviolation plots
the maximum constraint violation
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• @optimplotstepsize plots the step
size

For information on writing a custom
plot function, see “Plot Functions” on
page 9-30.

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude
of the displacements in x for cases in
which the solver takes steps that are
considered too large. The default is
none ([]).

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).

TolCon Termination tolerance on the constraint
violation, a positive scalar. The default
is 1e-6.

TolConSQP Termination tolerance on inner
iteration SQP constraint violation, a
positive scalar. The default is 1e-6.

TolFun Termination tolerance on the function
value, a positive scalar. The default is
1e-6.

TolX Termination tolerance on x, a positive
scalar. The default is 1e-6.
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TypicalX Typical x values. The number of
elements in TypicalX is equal to
the number of elements in x0, the
starting point. The default value
is ones(numberofvariables,1).
fgoalattain uses TypicalX for
scaling finite differences for gradient
estimation.

UseParallel When true, estimate gradients
in parallel. Disable by setting to
the default, false. See “Parallel
Computing”.

Examples Consider a linear system of differential equations.

An output feedback controller, K, is designed producing a closed loop
system

x A BKC x Bu
y Cx
= + +
=

( ) ,
.

The eigenvalues of the closed loop system are determined from the
matrices A, B, C, and K using the command eig(A+B*K*C). Closed loop
eigenvalues must lie on the real axis in the complex plane to the left of
the points [-5,-3,-1]. In order not to saturate the inputs, no element
in K can be greater than 4 or be less than -4.

The system is a two-input, two-output, open loop, unstable system,
with state-space matrices.

A B C=
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
0 5 0 0
0 2 10
0 1 2

1 0
2 2

0 1

1 0
.

        
00

0 0 1
⎡

⎣
⎢

⎤

⎦
⎥ .

The set of goal values for the closed loop eigenvalues is initialized as

goal = [-5,-3,-1];
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To ensure the same percentage of under- or overattainment in the
active objectives at the solution, the weighting matrix, weight, is set to
abs(goal).

Starting with a controller, K = [-1,-1; -1,-1], first write a function
file, eigfun.m.

function F = eigfun(K,A,B,C)
F = sort(eig(A+B*K*C)); % Evaluate objectives

Next, enter system matrices and invoke an optimization routine.

A = [-0.5 0 0; 0 -2 10; 0 1 -2];

B = [1 0; -2 2; 0 1];

C = [1 0 0; 0 0 1];

K0 = [-1 -1; -1 -1]; % Initialize controller matrix

goal = [-5 -3 -1]; % Set goal values for the eigenvalues

weight = abs(goal); % Set weight for same percentage

lb = -4*ones(size(K0)); % Set lower bounds on the controller

ub = 4*ones(size(K0)); % Set upper bounds on the controller

options = optimoptions('fgoalattain','Display','iter'); % Set display parameter

[K,fval,attainfactor] = fgoalattain(@(K)eigfun(K,A,B,C),...

K0,goal,weight,[],[],[],[],lb,ub,[],options)

You can run this example by using the script goaldemo. (From the
MATLAB Help browser or the MathWorks Web site documentation,
you can click the goaldemo name to display the example.) After about
11 iterations, a solution is

Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1 1
2 2
4

K =
-4.0000 -0.2564
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-4.0000 -4.0000

fval =
-6.9313
-4.1588
-1.4099

attainfactor =
-0.3863

Discussion

The attainment factor indicates that each of the objectives has been
overachieved by at least 38.63% over the original design goals. The
active constraints, in this case constraints 1 and 2, are the objectives
that are barriers to further improvement and for which the percentage
of overattainment is met exactly. Three of the lower bound constraints
are also active.

In the preceding design, the optimizer tries to make the objectives
less than the goals. For a worst-case problem where the objectives
must be as near to the goals as possible, use optimoptions to set the
GoalsExactAchieve option to the number of objectives for which this
is required.

Consider the preceding problem when you want all the eigenvalues
to be equal to the goal values. A solution to this problem is found by
invoking fgoalattain with the GoalsExactAchieve option set to 3.

options = optimoptions('fgoalattain','GoalsExactAchieve',3);

[K,fval,attainfactor] = fgoalattain(...

@(K)eigfun(K,A,B,C),K0,goal,weight,[],[],[],[],lb,ub,[],...

options);

After about seven iterations, a solution is

K,fval,attainfactor

K =
-1.5954 1.2040
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-0.4201 -2.9046

fval =
-5.0000
-3.0000
-1.0000

attainfactor =
1.1304e-022

In this case the optimizer has tried to match the objectives to the goals.
The attainment factor (of 1.1304e-22 or so, depending on your system)
indicates that the goals have been matched almost exactly.

Notes This problem has discontinuities when the eigenvalues become complex;
this explains why the convergence is slow. Although the underlying
methods assume the functions are continuous, the method is able
to make steps toward the solution because the discontinuities do not
occur at the solution point. When the objectives and goals are complex,
fgoalattain tries to achieve the goals in a least-squares sense.

Algorithms Multiobjective optimization concerns the minimization of a set of
objectives simultaneously. One formulation for this problem, and
implemented in fgoalattain, is the goal attainment problem of
Gembicki [3]. This entails the construction of a set of goal values for
the objective functions. Multiobjective optimization is discussed in
“Multiobjective Optimization Algorithms” on page 6-236.

In this implementation, the slack variable γ is used as a dummy
argument to minimize the vector of objectives F(x) simultaneously;
goal is a set of values that the objectives attain. Generally, prior to
the optimization, it is not known whether the objectives will reach
the goals (under attainment) or be minimized less than the goals
(overattainment). A weighting vector, weight, controls the relative
underattainment or overattainment of the objectives.

fgoalattain uses a sequential quadratic programming (SQP) method,
which is described in “Sequential Quadratic Programming (SQP)” on
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page 6-33. Modifications are made to the line search and Hessian. In
the line search an exact merit function (see [1] and [4]) is used together
with the merit function proposed by [5] and [6]. The line search is
terminated when either merit function shows improvement. A modified
Hessian, which takes advantage of the special structure of the problem,
is also used (see [1] and [4]). A full description of the modifications used
is found in “Goal Attainment Method” on page 6-237 in “Introduction to
Algorithms.” Setting the MeritFunction option to 'singleobj' with

options = optimoptions(options,'MeritFunction','singleobj')

uses the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 6-35 for more details on
the algorithm used and the types of procedures displayed under the
Procedures heading when the Display option is set to 'iter'.

Limitations The objectives must be continuous. fgoalattain might give only local
solutions.

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A
New Algorithm for Statistical Circuit Design Based on Quasi-Newton
Methods and Function Splitting,” IEEE Transactions on Circuits and
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[2] Fleming, P.J. and A.P. Pashkevich, Computer Aided Control System
Design Using a Multi-Objective Optimisation Approach, Control 1985
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[6] Powell, M.J.D., “A Fast Algorithm for Nonlinear Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson,
Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also fmincon | fminimax | optimoptions | optimtool

How To • function_handle

• “Multiobjective Optimization”
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Purpose Find minimum of single-variable function on fixed interval

Equation Finds a minimum for a problem specified by

min ( ) .
x

f x x x x such that 1 2< <

x, x1, and x2 are scalars and f(x) is a function that returns a scalar.

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
x = fminbnd(problem)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd attempts to find a minimum of a function of one variable
within a fixed interval.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function, if necessary.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer
of the scalar valued function that is described in fun in the interval
x1 < x < x2. fun is either a function handle to a file or is an
anonymous function.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fminbnd(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-35.

Create the structure problem by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.
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[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at the solution x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that
describes the exit condition of fminbnd.

[x,fval,exitflag,output] = fminbnd(...) returns a structure
output that contains information about the optimization.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminbnd. This section provides function-specific
details for fun, options, and problem:

fun The function to be minimized. fun is a function handle
for a function that accepts a scalar x and returns a scalar
f, the objective function evaluated at x. The function
fun can be specified as a function handle for a file:

x = fminbnd(@myfun,x1,x2)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x.

fun can also be a function handle for an anonymous
function.

x = fminbnd(@(x)sin(x^2),x1,x2);

options “Options” on page 10-37 provides the function-specific
details for the options values.
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f Objective function

x1 Left endpoint

x2 Right endpoint

solver 'fminbnd'

problem

options Options structure created with optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fminbnd. This section provides function-specific
details for exitflag and output:

Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter or number
of function evaluations exceeded
options.MaxFunEvals.

-1 Stopped by an output function or plot
function.

exitflag

-2 The bounds are inconsistent, meaning
x1 > x2.

Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Optimization algorithm used

output

message Exit message

10-36



fminbnd

Options Optimization options used by fminbnd. You can use optimset to set or
change the values of these fields in the options structure options. See
“Optimization Options Reference” on page 9-7 for detailed information.

Display Level of display. 'off' or 'none' displays no
output; 'iter' displays output at each iteration;
'final' displays just the final output; 'notify'
(default) displays output only if the function does
not converge.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex, Inf, or NaN. The
default 'off' displays no error.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is 500.

MaxIter Maximum number of iterations allowed, a positive
integer. The default is 500.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point

• @optimplotfunccount plots the function count

• @optimplotfval plots the function value
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For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolX Termination tolerance on x, a positive scalar. The
default is 1e-4.

Examples A minimum of sin(x) occurs at

x = fminbnd(@sin,0,2*pi)
x =

4.7124

The value of the function at the minimum is

y = sin(x)
y =

-1.0000

To find the minimum of the function

f(x) = (x – 3)2 – 1,

on the interval (0,5), first write a function file.

function f = myfun(x)
f = (x-3)^2 - 1;

Next, call an optimization routine.

x = fminbnd(@myfun,0,5)

This generates the solution

x =
3

The value at the minimum is

y = myfun(x)
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y =
-1

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following function
file:

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:

x = fminbnd(@(x) myfun(x,a),0,1)

x =
0.9999

Algorithms fminbnd is a function file. The algorithm is based on golden section
search and parabolic interpolation. Unless the left endpoint x1 is very
close to the right endpoint x2, fminbnd never evaluates fun at the
endpoints, so fun need only be defined for x in the interval x1 < x < x2.

If the minimum actually occurs at x1 or x2, fminbnd returns a point
x in the interior of the interval (x1,x2) that is close to the minimizer.
In this case, the distance of x from the minimizer is no more than
2*(TolX + 3*abs(x)*sqrt(eps)). See [1] or [2] for details about the
algorithm.
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Limitations The function to be minimized must be continuous. fminbnd might only
give local solutions.

fminbnd often exhibits slow convergence when the solution is on a
boundary of the interval. In such a case, fmincon often gives faster and
more accurate solutions.

fminbnd only handles real variables.

References [1] Forsythe, G.E., M.A. Malcolm, and C.B. Moler, Computer Methods
for Mathematical Computations, Prentice Hall, 1976.

[2] Brent, Richard. P., Algorithms for Minimization without Derivatives,
Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

See Also fminsearch | fmincon | fminunc | optimset | optimtool

How To • function_handle

• “Anonymous Functions”
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Purpose Find minimum of constrained nonlinear multivariable function

Equation Finds the minimum of a problem specified by

min ( )

( )
( )

,

x
f x

c x
ceq x

A x b
Aeq x beq

lb x ub

 such that 

≤
=

⋅ ≤
⋅ =
≤ ≤

⎧

⎨

⎪
0
0⎪⎪⎪

⎩

⎪
⎪
⎪

b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x) are
functions that return vectors, and f(x) is a function that returns a scalar.
f(x), c(x), and ceq(x) can be nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

Syntax x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(problem)
[x,fval] = fmincon(...)
[x,fval,exitflag] = fmincon(...)
[x,fval,exitflag,output] = fmincon(...)
[x,fval,exitflag,output,lambda] = fmincon(...)
[x,fval,exitflag,output,lambda,grad] = fmincon(...)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)

Description fmincon attempts to find a constrained minimum of a scalar function
of several variables starting at an initial estimate. This is generally
referred to as constrained nonlinear optimization or nonlinear
programming.
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Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function and nonlinear constraint
functions, if necessary.

x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a
minimizer x of the function described in fun subject to the linear
inequalities A*x b. x0 can be a scalar, vector, or matrix.

x = fmincon(fun,x0,A,b,Aeq,beq) minimizes fun subject to the
linear equalities Aeq*x = beq and A*x b. If no inequalities exist, set
A = [] and b = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always
in the range lb ≤ x ≤ ub. If no equalities exist, set Aeq = [] and beq
= []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Components of x0 that violate the bounds lb x ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

See “Iterations Can Violate Constraints” on page 2-34.

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) or equalities ceq(x)
defined in nonlcon. fmincon optimizes such that c(x) 0 and
ceq(x) = 0. If no bounds exist, set lb = [] and/or ub = [].

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in options. Use
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optimoptions to set these options. If there are no nonlinear inequality
or equality constraints, set nonlcon = [].

x = fmincon(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-43.
Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = fmincon(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fmincon(...) returns a value exitflag that
describes the exit condition of fmincon.

[x,fval,exitflag,output] = fmincon(...) returns a structure
output with information about the optimization.

[x,fval,exitflag,output,lambda] = fmincon(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

[x,fval,exitflag,output,lambda,grad] = fmincon(...) returns
the value of the gradient of fun at the solution x.

[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(...)
returns the value of the Hessian at the solution x. See “fmincon
Hessian” on page 3-29.

Input
Arguments

“Function Arguments” on page 9-2 describes the arguments passed to
fmincon. “Options” on page 10-52 provides the function-specific details
for the options values. This section provides function-specific details
for fun, nonlcon, and problem.

10-43



fmincon

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. fun can be specified
as a function handle for a file:

x = fmincon(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function:

x = fmincon(@(x)norm(x)^2,x0,A,b);

If the gradient of fun can also be computed and the GradObj option is 'on',
as set by

options = optimoptions('fmincon','GradObj','on')

then fun must return the gradient vector g(x) in the second output
argument.

If the Hessian matrix can also be computed and the Hessian option is 'on'
via options = optimoptions('fmincon','Hessian','user-supplied')
and the Algorithm option is trust-region-reflective, fun must return
the Hessian value H(x), a symmetric matrix, in a third output argument.
fun can give a sparse Hessian. See “Writing Objective Functions” on page
2-18 for details.

If the Hessian matrix can be computed and the Algorithm option is
interior-point, there are several ways to pass the Hessian to fmincon. For
more information, see “Hessian” on page 10-49.

A, b, Aeq,
beq

Linear constraint matrices A and Aeq, and their corresponding vectors
b and beq, can be sparse or dense. The trust-region-reflective and
interior-point algorithms use sparse linear algebra. If A or Aeq is large,
with relatively few nonzero entries, save running time and memory in the
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trust-region-reflective or interior-point algorithms by using sparse
matrices.

nonlcon The function that computes the nonlinear inequality constraints c(x) 0
and the nonlinear equality constraints ceq(x) = 0. nonlcon accepts a
vector x and returns the two vectors c and ceq. c is a vector that contains
the nonlinear inequalities evaluated at x, and ceq is a vector that contains
the nonlinear equalities evaluated at x. nonlcon should be specified as a
function handle to a file or to an anonymous function, such as mycon:

x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
ceq = ... % Compute nonlinear equalities at x.

If the gradients of the constraints can also be computed and the GradConstr
option is 'on', as set by

options = optimoptions('fmincon','GradConstr','on')

then nonlcon must also return, in the third and fourth output arguments,
GC, the gradient of c(x), and GCeq, the gradient of ceq(x). GC and GCeq
can be sparse or dense. If GC or GCeq is large, with relatively few nonzero
entries, save running time and memory in the interior-point algorithm by
representing them as sparse matrices. For more information, see “Nonlinear
Constraints” on page 2-37.

Note Because Optimization Toolbox functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must
return outputs of type double.
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objective Objective function

x0 Initial point for x

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fmincon'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 describes arguments returned by
fmincon. This section provides function-specific details for exitflag,
lambda, and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

All Algorithms:

1 First-order optimality measure
was less than options.TolFun,
and maximum constraint
violation was less than
options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

exitflag
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-1 Stopped by an output function or
plot function.

-2 No feasible point was found.

trust-region-reflective, interior-point, and
sqp algorithms:

2 Change in x was less than
options.TolX and maximum
constraint violation was less
than options.TolCon.

trust-region-reflective algorithm only:

3 Change in the objective
function value was less than
options.TolFun and maximum
constraint violation was less
than options.TolCon.

active-set algorithm only:

4 Magnitude of the search
direction was less than
2*options.TolX and maximum
constraint violation was less
than options.TolCon.

5 Magnitude of directional
derivative in search direction was
less than 2*options.TolFun and
maximum constraint violation
was less than options.TolCon.

interior-point and sqp algorithms:

-3 Objective function at
current iteration went below
options.ObjectiveLimit and
maximum constraint violation
was less than options.TolCon.

10-47



fmincon

grad Gradient at x

hessian Hessian at x

Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of line search step relative
to search direction (active-set
algorithm only)

constrviolation Maximum of constraint functions

stepsize Length of last displacement
in x (active-set and
interior-point algorithms)

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region-reflective and
interior-point algorithms)

firstorderopt Measure of first-order optimality

output

message Exit message
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Hessian

fmincon uses a Hessian as an optional input. This Hessian is the second
derivatives of the Lagrangian (see Equation 3-1), namely,

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).  = + +∑ ∑ (10-1)

The various fmincon algorithms handle input Hessians differently:

• The active-set and sqp algorithms do not accept a user-supplied
Hessian. They compute a quasi-Newton approximation to the
Hessian of the Lagrangian.

• The trust-region-reflective algorithm can accept a user-supplied
Hessian as the final output of the objective function. Since this
algorithm has only bounds or linear constraints, the Hessian of the
Lagrangian is same as the Hessian of the objective function. See
“Writing Scalar Objective Functions” on page 2-19 for details on how
to pass the Hessian to fmincon. Indicate that you are supplying a
Hessian by

options = optimoptions('fmincon','Algorithm','trust-region-reflectiv

If you do not pass a Hessian, the algorithm computes a
finite-difference approximation.

• The interior-point algorithm can accept a user-supplied Hessian
as a separately defined function—it is not computed in the objective
function. The syntax is

hessian = hessianfcn(x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number
of variables. If hessian is large and has relatively few nonzero
entries, save running time and memory by representing hessian as a
sparse matrix. lambda is a structure with the Lagrange multiplier
vectors associated with the nonlinear constraints:

lambda.ineqnonlin
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lambda.eqnonlin

fmincon computes the structure lambda. hessianfcn must calculate
the sums in Equation 10-1. Indicate that you are supplying a Hessian
by

options = optimoptions('fmincon','Algorithm','interior-point',...
'Hessian','user-supplied','HessFcn',@hessianfcn);

For an example, see “fmincon Interior-Point Algorithm with Analytic
Hessian” on page 6-57.

The interior-point algorithm has several more options for Hessians,
see “Choose Input Hessian for interior-point fmincon” on page 2-23:

• options = optimoptions('fmincon','Hessian','bfgs');

fmincon calculates the Hessian by a dense quasi-Newton
approximation. This is the default.

• options = optimoptions('fmincon','Hessian','lbfgs');

fmincon calculates the Hessian by a limited-memory, large-scale
quasi-Newton approximation. The default memory, 10 iterations,
is used.

• options =
optimoptions('fmincon','Hessian',{'lbfgs',positive integer});

fmincon calculates the Hessian by a limited-memory, large-scale
quasi-Newton approximation. The positive integer specifies how
many past iterations should be remembered.

• options =
optimoptions('fmincon','Hessian','fin-diff-grads',...
'SubproblemAlgorithm','cg','GradObj','on',...
'GradConstr','on');

fmincon calculates a Hessian-times-vector product by finite
differences of the gradient(s). You must supply the gradient of the
objective function, and also gradients of nonlinear constraints if
they exist.
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Hessian Multiply Function
The interior-point and trust-region-reflective algorithms
allow you to supply a Hessian multiply function. This function gives
the result of a Hessian-times-vector product, without computing the
Hessian directly. This can save memory.

The syntax for the two algorithms differ:

• For the interior-point algorithm, the syntax is

W = HessMultFcn(x,lambda,v);

The result W should be the product H*v, where H is the Hessian of
the Lagrangian at x (see Equation 10-1), lambda is the Lagrange
multiplier (computed by fmincon), and v is a vector of size n-by-1. Set
options as follows:

options = optimoptions('fmincon','Algorithm','interior-point','Hessi
'SubproblemAlgorithm','cg','HessMult',@HessMultFcn);

Supply the function HessMultFcn, which returns an n-by-1 vector,
where n is the number of dimensions of x. The HessMult option
enables you to pass the result of multiplying the Hessian by a vector
without calculating the Hessian.

• The trust-region-reflective algorithm does not involve lambda:

W = HessMultFcn(H,v);

The result W = H*v. fmincon passes H as the value returned in
the third output of the objective function (see “Writing Scalar
Objective Functions” on page 2-19). fmincon also passes v, a vector
or matrix with n rows. The number of columns in v can vary, so write
HessMultFcn to accept an arbitrary number of columns. H does not
have to be the Hessian; rather, it can be anything that enables you to
calculate W = H*v.

Set options as follows:

options = optimoptions('fmincon','Algorithm','trust-region-reflectiv
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'Hessian','user-supplied','HessMult',@HessMultFcn);

For an example using a Hessian multiply function with the
trust-region-reflective algorithm, see “Minimization with Dense
Structured Hessian, Linear Equalities” on page 6-80.

Options Optimization options used by fmincon. Some options apply to all
algorithms, and others are relevant for particular algorithms. Use
optimoptions to set or change the values in options. See “Optimization
Options Reference” on page 9-7 for detailed information.

All Algorithms

All four algorithms use these options:

Algorithm Choose the optimization algorithm:

• 'interior-point' (default)

• 'trust-region-reflective'

• 'sqp'

• 'active-set'

For information on choosing the algorithm, see
“Choosing the Algorithm” on page 2-7.

The trust-region-reflective algorithm
requires:

• A gradient to be supplied in the objective
function

• GradObj to be set to 'on'

• Either bound constraints or linear equality
constraints, but not both

If you select the 'trust-region-reflective'
algorithm and these conditions are not all
satisfied, fmincon throws an error.
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The 'active-set' and 'sqp' algorithms are not
large-scale. See “Large-Scale vs. Medium-Scale
Algorithms” on page 2-12.

DerivativeCheck Compare user-supplied derivatives (gradients
of objective or constraints) to finite-differencing
derivatives. The choices are 'on' or the default,
'off'.

Diagnostics Display diagnostic information about the
function to be minimized or solved. The choices
are 'on' or the default, 'off'.

DiffMaxChange Maximum change in variables for
finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for
finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration, and
gives the default exit message.

• 'iter-detailed' displays output at each
iteration, and gives the technical exit
message.

• 'notify' displays output only if the function
does not converge, and gives the default exit
message.

• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays just the final
output, and gives the default exit message.
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• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor. When you set
FinDiffRelStep to a vector v, forward finite
differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector.
The default is sqrt(eps) for forward finite
differences, and eps^(1/3) for central finite
differences.

FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (default), or 'central'
(centered). 'central' takes twice as many
function evaluations but should be more
accurate.

fmincon is careful to obey bounds when
estimating both types of finite differences.
So, for example, it could take a backward,
rather than a forward, difference to avoid
evaluating at a point outside bounds. However,
for the interior-point algorithm, 'central'
differences might violate bounds during their
evaluation if the AlwaysHonorConstraints
option is set to 'none'.
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FunValCheck Check whether objective function and
constraints values are valid. 'on' displays an
error when the objective function or constraints
return a value that is complex, Inf, or NaN. The
default, 'off', displays no error.

GradConstr Gradient for nonlinear constraint functions
defined by the user. When set to 'on', fmincon
expects the constraint function to have four
outputs, as described in nonlcon in the “Input
Arguments” on page 10-43 section. When set to
the default, 'off', gradients of the nonlinear
constraints are estimated by finite differences.
The trust-region-reflective algorithm does
not accept nonlinear constraints.

GradObj Gradient for the objective function defined by
the user. See the preceding description of fun
to see how to define the gradient in fun. Set
to 'on' to have fmincon use a user-defined
gradient of the objective function. The default,
'off', causes fmincon to estimate gradients
using finite differences. You must provide the
gradient, and set GradObj to 'on', to use the
trust-region-reflective method.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default value
for all algorithms except interior-point
is 100*numberOfVariables; for the
interior-point algorithm the default is
3000.

MaxIter Maximum number of iterations allowed, a
positive integer. The default value for all
algorithms except interior-point is 400; for
the interior-point algorithm the default is
1000.
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OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots
or write your own. Pass a function handle or a
cell array of function handles. The default is
none ([]).

• @optimplotx plots the current point

• @optimplotfunccount plots the function
count

• @optimplotfval plots the function value

• @optimplotconstrviolation plots the
maximum constraint violation

• @optimplotstepsize plots the step size

• @optimplotfirstorderopt plots the
first-order optimality measure

For information on writing a custom plot
function, see “Plot Functions” on page 9-30.

TolCon Tolerance on the constraint violation, a positive
scalar. The default is 1e-6.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6.

TolX Termination tolerance on x, a positive
scalar. The default value for all algorithms
except 'interior-point' is 1e-6; for the
'interior-point' algorithm the default is
1e-10.
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TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value
is ones(numberofvariables,1). fmincon
uses TypicalX for scaling finite differences for
gradient estimation.

The 'trust-region-reflective' algorithm
uses TypicalX only for the DerivativeCheck
option.

UseParallel When true, estimate gradients in parallel.
Disable by setting to the default, false.
trust-region-reflective requires a gradient
in the objective, so UseParallel does not apply.
See “Parallel Computing”.

Trust-Region-Reflective Algorithm

The 'trust-region-reflective' algorithm uses these options:

Hessian If 'on' or 'user-supplied', fmincon uses
a user-defined Hessian (defined in fun), or
Hessian information (when using HessMult),
for the objective function. If 'off' (default),
fmincon approximates the Hessian using
finite differences.

HessMult Function handle for Hessian multiply function.
For large-scale structured problems, this
function computes the Hessian matrix product
H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains a matrix used to
compute H*Y.
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The first argument must be the same as the
third argument returned by the objective
function fun, for example:

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number
of rows as there are dimensions in the
problem. W = H*Y, although H is not formed
explicitly. fmincon uses Hinfo to compute
the preconditioner. See “Passing Extra
Parameters” on page 2-53 for information
on how to supply values for any additional
parameters that hmfun needs.

Note Hessian must be set to 'on' or
'user-supplied' for fmincon to pass Hinfo
from fun to hmfun.

See “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-80 for
an example.

HessPattern Sparsity pattern of the Hessian for finite
differencing. Set HessPattern(i,j) = 1
when you can have ∂2fun/∂x(i)∂x(j) ≠ 0.
Otherwise, set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to
compute the Hessian matrix H in fun, but you
can determine (say, by inspection) when the
ith component of the gradient of fun depends
on x(j). fmincon can approximate H via
sparse finite differences (of the gradient) if
you provide the sparsity structure of H— i.e.,
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locations of the nonzeros — as the value for
HessPattern.

In the worst case, when the structure is
unknown, do not set HessPattern. The default
behavior is as if HessPattern is a dense
matrix of ones. Then fmincon computes a
full finite-difference approximation in each
iteration. This can be very expensive for large
problems, so it is usually better to determine
the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Preconditioned
Conjugate Gradient Method” on page 6-29.

PrecondBandWidth Upper bandwidth of preconditioner for PCG,
a nonnegative integer. By default, diagonal
preconditioning is used (upper bandwidth
of 0). For some problems, increasing the
bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to
Inf uses a direct factorization (Cholesky)
rather than the conjugate gradients (CG). The
direct factorization is computationally more
expensive than CG, but produces a better
quality step towards the solution.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.
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Active-Set Algorithm

The 'active-set' algorithm uses these options:

MaxSQPIter Maximum number of SQP iterations
allowed, a positive integer. The default
is 10*max(numberOfVariables,
numberOfInequalities +
numberOfBounds).

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude
of the displacements in x for cases in
which the solver takes steps that are
considered too large. The default is no
bounds ([]).

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).

TolConSQP Termination tolerance on inner
iteration SQP constraint violation, a
positive scalar. The default is 1e-6.

Interior-Point Algorithm

The 'interior-point' algorithm uses these options:
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AlwaysHonorConstraints The default 'bounds' ensures that
bound constraints are satisfied at every
iteration. Disable by setting to 'none'.

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page 10-49).
This is used when the Hessian option
is set to 'user-supplied'.

Hessian Chooses how fmincon calculates the
Hessian (see “Hessian” on page 10-49).
The choices are:

• 'bfgs' (default)

• 'fin-diff-grads'

• 'lbfgs'

• {'lbfgs',Positive Integer}

• 'user-supplied'

HessMult Handle to a user-supplied function that
gives a Hessian-times-vector product
(see “Hessian” on page 10-49). This is
used when the Hessian option is set to
'user-supplied'.

InitBarrierParam Initial barrier value, a positive scalar.
Sometimes it might help to try a value
above the default 0.1, especially if the
objective or constraint functions are
large.

InitTrustRegionRadius Initial radius of the trust region,
a positive scalar. On badly scaled
problems it might help to choose a

value smaller than the default n ,
where n is the number of variables.
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MaxProjCGIter A tolerance (stopping criterion) for
the number of projected conjugate
gradient iterations; this is an
inner iteration, not the number of
iterations of the algorithm. This
positive integer has a default value of
2*(numberOfVariables - numberOfEqualities).

ObjectiveLimit A tolerance (stopping criterion) that
is a scalar. If the objective function
value goes below ObjectiveLimit and
the iterate is feasible, the iterations
halt, since the problem is presumably
unbounded. The default value is -1e20.

ScaleProblem 'obj-and-constr' causes the
algorithm to normalize all constraints
and the objective function. Disable by
setting to the default 'none'.

SubproblemAlgorithm Determines how the iteration
step is calculated. The default,
'ldl-factorization', is usually
faster than 'cg' (conjugate gradient),
though 'cg' might be faster for large
problems with dense Hessians.

TolProjCG A relative tolerance (stopping criterion)
for projected conjugate gradient
algorithm; this is for an inner iteration,
not the algorithm iteration. This
positive scalar has a default of 0.01.

TolProjCGAbs Absolute tolerance (stopping criterion)
for projected conjugate gradient
algorithm; this is for an inner iteration,
not the algorithm iteration. This
positive scalar has a default of 1e-10.
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SQP Algorithm

The 'sqp' algorithm uses these options:

ObjectiveLimit A tolerance (stopping criterion) that
is a scalar. If the objective function
value goes below ObjectiveLimit and
the iterate is feasible, the iterations
halt, since the problem is presumably
unbounded. The default value is -1e20.

ScaleProblem 'obj-and-constr' causes the
algorithm to normalize all constraints
and the objective function. Disable by
setting to the default 'none'.

Examples Find values of x that minimize f(x) = –x1x2x3, starting at the point
x = [10;10;10], subject to the constraints:

0 ≤ x1 + 2x2 + 2x3 ≤ 72.

1 Write a file that returns a scalar value f of the objective function
evaluated at x:

function f = myfun(x)
f = -x(1) * x(2) * x(3);

2 Rewrite the constraints as both less than or equal to a constant,

–x1–2x2–2x3 ≤ 0
x1 + 2x2 + 2x3≤ 72

3 Since both constraints are linear, formulate them as the matrix
inequality A·x ≤ b, where

A = [-1 -2 -2; ...
1 2 2];

b = [0;72];
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4 Supply a starting point and invoke an optimization routine:

x0 = [10;10;10]; % Starting guess at the solution
[x,fval] = fmincon(@myfun,x0,A,b);

5 After fmincon stops, the solution is

x
x =

24.0000
12.0000
12.0000

where the function value is

fval
fval =

-3.4560e+03

and linear inequality constraints evaluate to be less than or equal
to 0:

A*x-b
ans =

-72.0000
-0.0000

Notes Trust-Region-Reflective Optimization

To use the trust-region-reflective algorithm, you must

• Supply the gradient of the objective function in fun.

• Set GradObj to 'on' in options.

• Specify the feasible region using one, but not both, of the following
types of constraints:

- Upper and lower bounds constraints
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- Linear equality constraints, in which the equality constraint
matrix Aeq cannot have more rows than columns

You cannot use inequality constraints with the trust-region-reflective
algorithm. If the preceding conditions are not met, fmincon reverts to
the active-set algorithm.

fmincon returns a warning if you do not provide a gradient and
the Algorithm option is 'trust-region-reflective'. fmincon
permits an approximate gradient to be supplied, but this option is not
recommended; the numerical behavior of most optimization methods is
considerably more robust when the true gradient is used.

The trust-region-reflective method in fmincon is in general most
effective when the matrix of second derivatives, i.e., the Hessian matrix
H(x), is also computed. However, evaluation of the true Hessian
matrix is not required. For example, if you can supply the Hessian
sparsity structure (using the HessPattern option in options), fmincon
computes a sparse finite-difference approximation to H(x).

If x0 is not strictly feasible, fmincon chooses a new strictly feasible
(centered) starting point.

If components of x have no upper (or lower) bounds, fmincon prefers
that the corresponding components of ub (or lb) be set to Inf (or -Inf
for lb) as opposed to an arbitrary but very large positive (or negative in
the case of lower bounds) number.

Take note of these characteristics of linearly constrained minimization:

• A dense (or fairly dense) column of matrix Aeq can result in
considerable fill and computational cost.

• fmincon removes (numerically) linearly dependent rows in Aeq;
however, this process involves repeated matrix factorizations and
therefore can be costly if there are many dependencies.

• Each iteration involves a sparse least-squares solution with matrix

Aeq Aeq RT T= ,
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where RT is the Cholesky factor of the preconditioner. Therefore,
there is a potential conflict between choosing an effective

preconditioner and minimizing fill in Aeq .

Active-Set Optimization

If equality constraints are present and dependent equalities are
detected and removed in the quadratic subproblem, 'dependent'
appears under the Procedures heading (when you ask for output
by setting the Display option to'iter'). The dependent equalities
are only removed when the equalities are consistent. If the system
of equalities is not consistent, the subproblem is infeasible and
'infeasible' appears under the Procedures heading.

Algorithms Trust-Region-Reflective Optimization

The 'trust-region-reflective' algorithm is a subspace trust-region
method and is based on the interior-reflective Newton method described
in [3] and [4]. Each iteration involves the approximate solution of a
large linear system using the method of preconditioned conjugate
gradients (PCG). See the trust-region and preconditioned conjugate
gradient method descriptions in “fmincon Trust Region Reflective
Algorithm” on page 6-26.

Active-Set Optimization

fmincon uses a sequential quadratic programming (SQP) method.
In this method, the function solves a quadratic programming (QP)
subproblem at each iteration. fmincon updates an estimate of the
Hessian of the Lagrangian at each iteration using the BFGS formula
(see fminunc and references [7] and [8]).

fmincon performs a line search using a merit function similar to that
proposed by [6], [7], and [8]. The QP subproblem is solved using an
active set strategy similar to that described in [5]. “fmincon Active Set
Algorithm” on page 6-32 describes this algorithm in detail.

See also “SQP Implementation” on page 6-35 for more details on the
algorithm used.
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Interior-Point Optimization

This algorithm is described in “fmincon Interior Point Algorithm” on
page 6-43. There is more extensive description in [1], [41], and [9].

SQP Optimization

The fmincon 'sqp' algorithm is similar to the 'active-set' algorithm
described in “Active-Set Optimization” on page 10-66. “fmincon SQP
Algorithm” on page 6-42 describes the main differences. In summary,
these differences are:

• “Strict Feasibility With Respect to Bounds” on page 6-42

• “Robustness to Non-Double Results” on page 6-42

• “Refactored Linear Algebra Routines” on page 6-42

• “Reformulated Feasibility Routines” on page 6-42

Limitations fmincon is a gradient-based method that is designed to work on
problems where the objective and constraint functions are both
continuous and have continuous first derivatives.

When the problem is infeasible, fmincon attempts to minimize the
maximum constraint value.

The 'trust-region-reflective' algorithm does not allow equal
upper and lower bounds. For example, if lb(2)==ub(2), fmincon gives
this error:

Equal upper and lower bounds not permitted in this
large-scale method.
Use equality constraints and the medium-scale
method instead.

There are two different syntaxes for passing a Hessian, and there
are two different syntaxes for passing a HessMult function; one for
trust-region-reflective, and another for interior-point.
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For trust-region-reflective, the Hessian of the Lagrangian is the
same as the Hessian of the objective function. You pass that Hessian
as the third output of the objective function.

For interior-point, the Hessian of the Lagrangian involves the
Lagrange multipliers and the Hessians of the nonlinear constraint
functions. You pass the Hessian as a separate function that takes into
account both the position x and the Lagrange multiplier structure
lambda.

Trust-Region-Reflective Coverage and Requirements

Additional Information
Needed For Large Problems

Must provide gradient for f(x)
in fun.

• Provide sparsity structure of the Hessian or compute
the Hessian in fun.

• The Hessian should be sparse.

• Aeq should be sparse.

References [1] Byrd, R.H., J. C. Gilbert, and J. Nocedal, “A Trust Region Method
Based on Interior Point Techniques for Nonlinear Programming,”
Mathematical Programming, Vol 89, No. 1, pp. 149–185, 2000.

[2] Byrd, R.H., Mary E. Hribar, and Jorge Nocedal, “An Interior Point
Algorithm for Large-Scale Nonlinear Programming, SIAM Journal
on Optimization,” SIAM Journal on Optimization, Vol 9, No. 4, pp.
877–900, 1999.

[3] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
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[4] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
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eds.), Academic Press, 1978.
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See Also fminbnd | fminsearch | fminunc | optimoptions | optimtool

How To • function_handle

• “Constrained Optimization”
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Purpose Solve minimax constraint problem

Equation Finds the minimum of a problem specified by

min max ( )

( )
( )

x i
iF x

c x
ceq x
A x b

Aeq x beq
lb x

  such that  

≤
=

⋅ ≤
⋅ =
≤

0
0

≤≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ ub

where b and beq are vectors, A and Aeq are matrices, and c(x), ceq(x),
and F(x) are functions that return vectors. F(x), c(x), and ceq(x) can be
nonlinear functions.

x, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

You can also solve max-min problems with fminimax, using the identity

max min ( ) minmax ( ) .
x i

i
x i

iF x F x= − −( )

You can solve problems of the form

min max ( )
x i

iF x

by using the MinAbsMax option; see “Notes” on page 10-83.

Syntax x = fminimax(fun,x0)
x = fminimax(fun,x0,A,b)
x = fminimax(fun,x0,A,b,Aeq,beq)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fminimax(problem)
[x,fval] = fminimax(...)
[x,fval,maxfval] = fminimax(...)
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[x,fval,maxfval,exitflag] = fminimax(...)
[x,fval,maxfval,exitflag,output] = fminimax(...)
[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)

Description fminimax minimizes the worst-case (largest) value of a set of
multivariable functions, starting at an initial estimate. This is generally
referred to as the minimax problem.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective functions and nonlinear constraint
functions, if necessary.

x = fminimax(fun,x0) starts at x0 and finds a minimax solution x
to the functions described in fun.

x = fminimax(fun,x0,A,b) solves the minimax problem subject to
the linear inequalities A*x b.

x = fminimax(fun,x0,A,b,Aeq,beq) solves the minimax problem
subject to the linear equalities Aeq*x = beq as well. Set A = [] and b
= [] if no inequalities exist.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower
and upper bounds on the design variables in x, so that the solution is
always in the range lb ≤ x ≤ ub.

Note See “Iterations Can Violate Constraints” on page 2-34.

x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimax problem to the nonlinear inequalities c(x) or equality
constraints ceq(x) defined in nonlcon. fminimax optimizes such that
c(x) 0 and ceq(x) = 0. Set lb = [] and/or ub = [] if no bounds
exist.
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x = fminimax(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in options. Use
optimoptions to set these options.

x = fminimax(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-72.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = fminimax(...) returns the value of the objective function
fun at the solution x.

[x,fval,maxfval] = fminimax(...) returns the maximum of the
objective functions in the input fun evaluated at the solution x.

[x,fval,maxfval,exitflag] = fminimax(...) returns a value
exitflag that describes the exit condition of fminimax.

[x,fval,maxfval,exitflag,output] = fminimax(...) returns a
structure output with information about the optimization.

[x,fval,maxfval,exitflag,output,lambda] = fminimax(...)
returns a structure lambda whose fields contain the Lagrange
multipliers at the solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminimax. This section provides function-specific
details for fun, nonlcon, and problem:
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fun The function to be minimized. fun is a function that accepts a vector x and
returns a vector F, the objective functions evaluated at x. The function fun can
be specified as a function handle for a file:

x = fminimax(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fminimax(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a
vector using linear indexing.

To minimize the worst case absolute values of any of the elements of the vector
F(x) (i.e., min{max abs{F(x)} } ), partition those objectives into the first elements
of F and use optimoptions to set the MinAbsMax option to be the number of
such objectives.

If the gradient of the objective function can also be computed and the GradObj
option is 'on', as set by

options = optimoptions('fminimax','GradObj','on')

then the function fun must return, in the second output argument, the gradient
value G, a matrix, at x. The gradient consists of the partial derivative dF/dx of
each F at the point x. If F is a vector of length m and x has length n, where n is
the length of x0, then the gradient G of F(x) is an n-by-m matrix where G(i,j)
is the partial derivative of F(j) with respect to x(i) (i.e., the jth column of G
is the gradient of the jth objective function F(j)).

By checking the value of nargout, the function can avoid computing G
when myfun is called with only one output argument (in the case where the
optimization algorithm only needs the value of F but not G).
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function [F,G] = myfun(x)

F = ... % Compute the function values at x

if nargout > 1 % Two output arguments

G = ... % Gradients evaluated at x

end

Note Setting GradObj to 'on' is effective only when there is no nonlinear
constraint, or when the nonlinear constraint has GradConstr set to 'on' as
well. This is because internally the objective is folded into the constraints, so
the solver needs both gradients (objective and constraint) supplied in order to
avoid estimating a gradient.

nonlcon The function that computes the nonlinear inequality constraints c(x) 0 and
nonlinear equality constraints ceq(x) = 0. The function nonlcon accepts a
vector x and returns two vectors c and ceq. The vector c contains the nonlinear
inequalities evaluated at x, and ceq contains the nonlinear equalities evaluated
at x. The function nonlcon can be specified as a function handle.

x = fminimax(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x
ceq = ... % Compute nonlinear equalities at x

If the gradients of the constraints can also be computed and the GradConstr
option is 'on', as set by

options = optimoptions('fminimax','GradConstr','on')

then the function nonlcon must also return, in the third and fourth output
arguments, GC, the gradient of c(x), and GCeq, the gradient of ceq(x).
“Nonlinear Constraints” on page 2-37 explains how to “conditionalize” the
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gradients for use in solvers that do not accept supplied gradients, and explains
the syntax of gradients.

Note Setting GradConstr to 'on' is effective only when GradObj is set to 'on'
as well. This is because internally the objective is folded into the constraint, so
the solver needs both gradients (objective and constraint) supplied in order to
avoid estimating a gradient.

Note Because Optimization Toolbox functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must return
outputs of type double.

objective Objective function

x0 Initial point for x

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

nonlcon Nonlinear constraint function

solver 'fminimax'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fminimax. This section provides
function-specific details for exitflag, lambda, maxfval, and output:
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Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution x.

4 Magnitude of the search direction less than
the specified tolerance and constraint violation
less than options.TolCon.

5 Magnitude of directional derivative less than
the specified tolerance and constraint violation
less than options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of function
evaluations exceeded options.MaxFunEvals.

-1 Algorithm was terminated by the output
function.

exitflag

-2 No feasible point was found.

Structure containing the Lagrange multipliers at the solution x
(separated by constraint type). The fields of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

maxfval Maximum of the function values evaluated at the solution x, that is,
maxfval = max{fun(x)}.
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Structure containing information about the optimization. The fields
of the structure are

iterations Number of iterations taken.

funcCount Number of function evaluations.

lssteplength Size of line search step relative to search
direction

stepsize Final displacement in x

algorithm Optimization algorithm used.

firstorderopt Measure of first-order optimality

constrviolation Maximum of constraint functions

output

message Exit message

Options Optimization options used by fminimax. Use optimoptions to set or
change options. See “Optimization Options Reference” on page 9-7
for detailed information.

DerivativeCheck Compare user-supplied derivatives
(gradients of objective or constraints)
to finite-differencing derivatives. The
choices are 'on' or the default, 'off'.

Diagnostics Display diagnostic information about the
function to be minimized or solved. The
choices are 'on' or the default, 'off'.

DiffMaxChange Maximum change in variables for
finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for
finite-difference gradients (a positive
scalar). The default is 0.
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Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each
iteration, and gives the default exit
message.

• 'iter-detailed' displays output at
each iteration, and gives the technical
exit message.

• 'notify' displays output only if the
function does not converge, and gives
the default exit message.

• 'notify-detailed' displays output
only if the function does not converge,
and gives the technical exit message.

• 'final' (default) displays just the
final output, and gives the default
exit message.

• 'final-detailed' displays just the
final output, and gives the technical
exit message.

FinDiffRelStep Scalar or vector step size factor. When
you set FinDiffRelStep to a vector v,
forward finite differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta =
v.*max(abs(x),TypicalX);
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Scalar FinDiffRelStep expands to
a vector. The default is sqrt(eps)
for forward finite differences, and
eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate
gradients, are either 'forward' (the
default), or 'central' (centered).
'central' takes twice as many function
evaluations, but should be more
accurate.

The algorithm is careful to obey bounds
when estimating both types of finite
differences. So, for example, it could
take a backward, rather than a forward,
difference to avoid evaluating at a point
outside bounds.

FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. The default
'off' displays no error.

GradConstr Gradient for the user-defined
constraints. When set to 'on', fminimax
expects the constraint function to have
four outputs, as described in nonlcon
in “Input Arguments” on page 10-72.
When set to the default 'off', fminimax
estimates gradients of the nonlinear
constraints by finite differences.
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GradObj Gradient for the user-defined objective
function. See the preceding description
of fun to see how to define the gradient
in fun. Set to 'on' to have fminimax use
a user-defined gradient of the objective
function. The default 'off' causes
fminimax to estimate gradients using
finite differences.

MaxFunEvals Maximum number of function
evaluations allowed, a positive
integer. The default value is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed,
a positive integer. The default value is
400.

MaxSQPIter Maximum number of SQP iterations
allowed, a positive integer. The default
is 10*max(numberOfVariables,
numberOfInequalities +
numberOfBounds).

MeritFunction Use the goal attainment/minimax merit
function if set to 'multiobj' (default).
Use the fmincon merit function if set to
'singleobj'.

MinAbsMax Number of elements of Fi(x) to minimize
the maximum absolute value of Fi. See
“Notes” on page 10-83. The default is 0.

OutputFcn Specify one or more user-defined
functions that an optimization function
calls at each iteration, either as a
function handle or as a cell array of
function handles. The default is none
([]). See “Output Function” on page
9-21.
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PlotFcns Plots various measures of progress
while the algorithm executes, select
from predefined plots or write your own.
Pass a function handle or a cell array of
function handles. The default is none
([]).

• @optimplotx plots the current point.

• @optimplotfunccount plots the
function count.

• @optimplotfval plots the function
value.

• @optimplotconstrviolation plots
the maximum constraint violation.

• @optimplotstepsize plots the step
size.

For information on writing a custom plot
function, see “Plot Functions” on page
9-30.

RelLineSrchBnd Relative bound (a real nonnegative
scalar value) on the line search step
length such that the total displacement
in x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude of
the displacements in x for cases in which
the solver takes steps that it considers
too large. The default is no bounds ([]).

RelLineSrchBndDuration Number of iterations for which the
bound specified in RelLineSrchBnd
should be active (default is 1).
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TolCon Termination tolerance on the constraint
violation, a positive scalar. The default
is 1e-6.

TolConSQP Termination tolerance on inner iteration
SQP constraint violation, a positive
scalar. The default is 1e-6.

TolFun Termination tolerance on the function
value, a positive scalar. The default is
1e-6.

TolX Termination tolerance on x, a positive
scalar. The default value is 1e-6.

TypicalX Typical x values. The number of
elements in TypicalX is equal to
the number of elements in x0, the
starting point. The default value
is ones(numberofvariables,1).
fminimax uses TypicalX for scaling
finite differences for gradient estimation.

UseParallel When true, estimate gradients
in parallel. Disable by setting to
the default false. See “Parallel
Computing”.

Examples Find values of x that minimize the maximum value of

[f1(x), f2(x), f3(x), f4(x), f5(x)]

where
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f x x x x x

f x x x
f x x x

1 1
2

2
2

1 2

2 1
2

2
2

3 1 2

2 48 40 304

3
3

( ) ,

( ) ,
( )

= + − − +

= − −
= + −118

8
4 1 2

5 1 2

,
( ) ,
( ) .

f x x x
f x x x

= − −
= + −

First, write a file that computes the five functions at x.

function f = myfun(x)
f(1)= 2*x(1)^2+x(2)^2-48*x(1)-40*x(2)+304; % Objectives
f(2)= -x(1)^2 - 3*x(2)^2;
f(3)= x(1) + 3*x(2) -18;
f(4)= -x(1)- x(2);
f(5)= x(1) + x(2) - 8;

Next, invoke an optimization routine.

x0 = [0.1; 0.1]; % Make a starting guess at solution
[x,fval] = fminimax(@myfun,x0);

After seven iterations, the solution is

x,fval

x =
4.0000
4.0000

fval =
0.0000 -64.0000 -2.0000 -8.0000 -0.0000

Notes You can solve problems of the form

min max ( ),
x i

iG x

where
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G x
F x i m
F x i mi

i

i
( )

( )
( ) .

=
≤ ≤
>

⎧
⎨
⎩⎪

1

Here m is the value of the MinAbsMax option. The advantage of this
formulation is you can minimize the absolute value of some components
of F, even though the absolute value function is not smooth.

In order to use this option, reorder the elements of F, if necessary, so
the first elements are those for which you want the minimum absolute
value.

For example, consider the problem in “Examples” on page 10-82. Modify
the problem to find the minimum of the maximum absolute values of all
fi(x). Solve this problem by invoking fminimax with the commands

x0 = [0.1; 0.1]; % Make a starting guess at the solution
options = optimoptions('fminimax','MinAbsMax',5); % Minimize abs. values
[x,fval] = fminimax(@myfun,x0,...

[],[],[],[],[],[],[],options);

After seven iterations, the solution is

x =
4.9256
2.0796

fval =
37.2356 -37.2356 -6.8357 -7.0052 -0.9948

Algorithms fminimax internally reformulates the minimax problem into an
equivalent Nonlinear Linear Programming problem by appending
additional (reformulation) constraints of the form Fi(x) ≤ γ to the
constraints given in “Equation” on page 10-70, and then minimizing
γ over x. fminimax uses a sequential quadratic programming (SQP)
method [1] to solve this problem.

Modifications are made to the line search and Hessian. In the line
search an exact merit function (see [2] and [4]) is used together with the
merit function proposed by [3] and [5]. The line search is terminated
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when either merit function shows improvement. The function uses
a modified Hessian that takes advantage of the special structure of
this problem. Using optimoptions to set the MeritFunction option
to'singleobj' uses the merit function and Hessian used in fmincon.

See also “SQP Implementation” on page 6-35 for more details on
the algorithm used and the types of procedures printed under the
Procedures heading when you set the Display option to'iter'.

Limitations The function to be minimized must be continuous. fminimax might
only give local solutions.

References [1] Brayton, R.K., S.W. Director, G.D. Hachtel, and L.Vidigal, “A
New Algorithm for Statistical Circuit Design Based on Quasi-Newton
Methods and Function Splitting,” IEEE Trans. Circuits and Systems,
Vol. CAS-26, pp. 784-794, Sept. 1979.

[2] Grace, A.C.W., “Computer-Aided Control System Design Using
Optimization Techniques,” Ph.D. Thesis, University of Wales, Bangor,
Gwynedd, UK, 1989.

[3] Han, S.P., “A Globally Convergent Method For Nonlinear
Programming,” Journal of Optimization Theory and Applications, Vol.
22, p. 297, 1977.

[4] Madsen, K. and H. Schjaer-Jacobsen, “Algorithms for Worst Case
Tolerance Optimization,” IEEE Trans. of Circuits and Systems, Vol.
CAS-26, Sept. 1979.

[5] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained
Optimization Calculations,” Numerical Analysis, ed. G.A. Watson,
Lecture Notes in Mathematics, Vol. 630, Springer Verlag, 1978.

See Also fgoalattain | lsqnonlin | optimoptions | optimtool

How To • function_handle
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• “Multiobjective Optimization”
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Purpose Find minimum of unconstrained multivariable function using
derivative-free method

Equation Finds the minimum of a problem specified by

min ( )
x

f x

where f(x) is a function that returns a scalar.

x is a vector or a matrix; see “Matrix Arguments” on page 2-32.

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
x = fminsearch(problem)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch attempts to find a minimum of a scalar function of several
variables, starting at an initial estimate. This is generally referred to
as unconstrained nonlinear optimization.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function, if necessary.

x = fminsearch(fun,x0) starts at the point x0 and returns a value x
that is a local minimizer of the function described in fun. fun is either
a function handle to a file or is an anonymous function. x0 can be a
scalar, vector, or matrix.

x = fminsearch(fun,x0,options) minimizes with the optimization
options specified in the structure options. Use optimset to set these
options.

x = fminsearch(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-88.
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Create the structure problem by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = fminsearch(...) returns in fval the value of the
objective function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag
that describes the exit condition of fminsearch.

[x,fval,exitflag,output] = fminsearch(...) returns a structure
output that contains information about the optimization.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into fminsearch. This section provides
function-specific details for fun, options, and problem:

fun The function to be minimized. fun is a function handle for
a function that accepts a vector x and returns a scalar f,
the objective function evaluated at x. The function fun can
be specified as a function handle for a file:

x = fminsearch(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous
function, such as

x = fminsearch(@(x)norm(x)^2,x0,A,b);

options “Options” on page 10-90 provides the function-specific
details for the options values.
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objective Objective function

x0 Initial point for x

solver 'fminsearch'

problem

options Options structure created with
optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by fminsearch. This section provides
function-specific details for exitflag and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 The function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

exitflag

-1 The algorithm was terminated by the
output function.

Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations

funcCount Number of function evaluations

algorithm 'Nelder-Mead simplex direct
search'

output

message Exit message
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Options Optimization options used by fminsearch. You can use optimset to set
or change the values of these fields in the options structure options. See
“Optimization Options Reference” on page 9-7 for detailed information.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration.

• 'notify' displays output only if the function
does not converge.

• 'final' (default) displays just the final
output.

FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function returns a value that is complex, Inf,
or NaN. The default 'off' displays no error.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
200*numberOfVariables.

MaxIter Maximum number of iterations allowed,
a positive integer. The default value is
200*numberOfVariables.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.
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PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined
plots or write your own. Pass a function handle
or a cell array of function handles. The default
is none ([]):

• @optimplotx plots the current point.

• @optimplotfunccount plots the function
count.

• @optimplotfval plots the function value.
For information on writing a custom plot
function, see “Plot Functions” on page 9-30.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-4.

TolX Termination tolerance on x, a positive scalar.
The default value is 1e-4.

Examples Example 1: Minimizing Rosenbrock’s Function with
fminsearch

A classic test example for multidimensional minimization is the
Rosenbrock banana function:

f x x x x( ) ( ) .= −( ) + −100 12 1
2 2

1
2

The minimum is at (1,1) and has the value 0. The traditional starting
point is (-1.2,1). The anonymous function shown here defines the
function and returns a function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval,exitflag] = fminsearch(banana,[-1.2, 1])
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This produces

x =
1.0000 1.0000

fval =
8.1777e-010

exitflag =
1

This indicates that the minimizer was found at [1 1] with a value near
zero.

Example 2

You can modify the first example by adding a parameter a to the second
term of the banana function:

f x x x a x( ) ( ) .= −( ) + −100 2 1
2 2

1
2

This changes the location of the minimum to the point [a,a^2]. To
minimize this function for a specific value of a, for example a = sqrt(2),
create a one-argument anonymous function that captures the value of a.

a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval,exitflag] = fminsearch(banana, [-1.2, 1], ...
optimset('TolX',1e-8))

seeks the minimum [sqrt(2), 2] to an accuracy higher than the
default on x. The result is

x =
1.4142 2.0000
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fval =
4.2065e-018

exitflag =
1

Algorithms fminsearch uses the simplex search method of [1]. This is a direct
search method that does not use numerical or analytic gradients as in
fminunc. The algorithm is described in detail in “fminsearch Algorithm”
on page 6-14.

fminsearch is generally less efficient than fminunc for problems
of order greater than two. However, when the problem is highly
discontinuous, fminsearch might be more robust.

Limitations fminsearch solves nondifferentiable problems and can often handle
discontinuity, particularly if it does not occur near the solution.
fminsearch might only give local solutions.

fminsearch only minimizes over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x
has complex variables, they must be split into real and imaginary parts.

Notes fminsearch is not the preferred choice for solving problems that are
sums of squares, that is, of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

Instead use the lsqnonlin function, which has been optimized for
problems of this form.

References [1] Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence Properties of the Nelder-Mead Simplex Method in Low
Dimensions,” SIAM Journal of Optimization, Vol. 9, Number 1, pp.
112–147, 1998.
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See Also fminbnd | fminunc | optimset | optimtool

How To • function_handle

• “Anonymous Functions”
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Purpose Find minimum of unconstrained multivariable function

Equation Finds the minimum of a problem specified by

min ( )
x

f x

where f(x) is a function that returns a scalar.

x is a vector or a matrix; see “Matrix Arguments” on page 2-32.

Syntax x = fminunc(fun,x0)
x = fminunc(fun,x0,options)
x = fminunc(problem)
[x,fval] = fminunc(...)
[x,fval,exitflag] = fminunc(...)
[x,fval,exitflag,output] = fminunc(...)
[x,fval,exitflag,output,grad] = fminunc(...)
[x,fval,exitflag,output,grad,hessian] = fminunc(...)

Description fminunc attempts to find a minimum of a scalar function of several
variables, starting at an initial estimate. This is generally referred to
as unconstrained nonlinear optimization.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function, if necessary.

x = fminunc(fun,x0) starts at the point x0 and attempts to find a
local minimum x of the function described in fun. x0 can be a scalar,
vector, or matrix.

x = fminunc(fun,x0,options) minimizes with the optimization
options specified in options. Use optimoptions to set these options.

x = fminunc(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-96.
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Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = fminunc(...) returns in fval the value of the objective
function fun at the solution x.

[x,fval,exitflag] = fminunc(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fminunc(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,grad] = fminunc(...) returns in grad
the value of the gradient of fun at the solution x.

[x,fval,exitflag,output,grad,hessian] = fminunc(...) returns
in hessian the value of the Hessian of the objective function fun at the
solution x. See “Hessian” on page 10-99.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fminunc. This section provides function-specific
details for fun, options, and problem:

fun The function to be minimized. fun is a function that accepts a vector x
and returns a scalar f, the objective function evaluated at x. The function
fun can be specified as a function handle for a file

x = fminunc(@myfun,x0)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = fminunc(@(x)norm(x)^2,x0);
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If the gradient of fun can also be computed and the GradObj option is
'on', as set by

options = optimoptions(@fminunc,'GradObj','on')

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x. The gradient is the partial derivatives
∂f/∂xi of f at the point x. That is, the ith component of g is the partial
derivative of f with respect to the ith component of x.

If the Hessian matrix can also be computed
and the Hessian option is 'on', i.e., options =
optimoptions(@fminunc,'GradObj','on','Hessian','on'), then the
function fun must return the Hessian value H, a symmetric matrix, at x
in a third output argument. The Hessian matrix is the second partial
derivatives matrix of f at the point x. That is, the (i,j)th component of H
is the second partial derivative of f with respect to xi and xj, ∂

2f/∂xi∂xj.
The Hessian is by definition a symmetric matrix.

“Writing Scalar Objective Functions” on page 2-19 explains how to
“conditionalize” the gradients and Hessians for use in solvers that do not
accept them. “Passing Extra Parameters” on page 2-53 explains how
to parameterize fun, if necessary.

options “Options” on page 10-99 provides the function-specific details for the
options values.

objective Objective function

x0 Initial point for x

solver 'fminunc'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fminunc. This section provides function-specific
details for exitflag and output:
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Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Magnitude of gradient smaller
than the TolFun tolerance.

2 Change in x was smaller than the
TolX tolerance.

3 Change in the objective function
value was less than the TolFun
tolerance.

5 Predicted decrease in the
objective function was less than
the TolFun tolerance.

0 Number of iterations exceeded
MaxIter or number of
function evaluations exceeded
MaxFunEvals.

-1 Algorithm was terminated by the
output function.

exitflag

-3 Objective function at
current iteration went below
ObjectiveLimit.

grad Gradient at x

hessian Hessian at x
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Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

firstorderopt Measure of first-order optimality

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region algorithm only)

stepsize Final displacement in x
(medium-scale algorithm only)

output

message Exit message

Hessian

fminunc computes the output argument hessian as follows:

• When using the medium-scale algorithm, the function computes a
finite-difference approximation to the Hessian at x using

- The gradient grad if you supply it

- The objective function fun if you do not supply the gradient

• When using the trust-region algorithm, the function uses

- options.Hessian, if you supply it, to compute the Hessian at x

- A finite-difference approximation to the Hessian at x, if you supply
only the gradient

Options fminunc uses these optimization options. Some options apply to
all algorithms, some are only relevant when you are using the
trust-region algorithm, and others are only relevant when you are
using the quasi-newton algorithm. Use optimoptions to set or change
options. See “Optimization Options Reference” on page 9-7 for detailed
information.
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All Algorithms

All fminunc algorithms use the following options:

Algorithm

If you use
optimset (not
recommended),
use LargeScale
instead of
Algorithm.

Choose the fminunc algorithm. Choices are
'quasi-newton' and 'trust-region' (default).

The trust-region algorithm requires you
to provide the gradient (see the preceding
description of fun), or else fminunc uses the
'quasi-newton' algorithm. For information
on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradient of
objective) to finite-differencing derivatives. The
choices are 'on' or the default 'off'.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on'
or the default 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration, and
gives the default exit message.

• 'iter-detailed' displays output at each
iteration, and gives the technical exit message.

• 'notify' displays output only if the function
does not converge, and gives the default exit
message.
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• 'notify-detailed' displays output only if
the function does not converge, and gives the
technical exit message.

• 'final' (default) displays just the final
output, and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor. When you set
FinDiffRelStep to a vector v, forward finite
differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector.
The default is sqrt(eps) for forward finite
differences, and eps^(1/3) for central finite
differences.

The trust-region algorithm uses FinDiffRelStep
only when DerivativeCheck is 'on'.

FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (the default), or 'central'
(centered). 'central' takes twice as many
function evaluations, but should be more
accurate. The trust-region algorithm uses
FinDiffType only when DerivativeCheck is
'on'.
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FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function returns a value that is complex, Inf, or
NaN. The default, 'off', displays no error.

GradObj Gradient for the objective function defined by
the user. See the preceding description of fun
to see how to define the gradient in fun. Set to
'on' to have fminunc use a user-defined gradient
of the objective function. The default 'off'
causes fminunc to estimate gradients using finite
differences. You must provide the gradient, and
set GradObj to 'on', to use the trust-region
algorithm. This option is not required for the
quasi-Newton algorithm.

LargeScale

If you use
optimoptions
(recommended),
use Algorithm
instead of
LargeScale.

Use large-scale algorithm if possible when set to
the default 'on'. Use medium-scale algorithm
when set to 'off'.

The LargeScale algorithm requires you
to provide the gradient (see the preceding
description of fun), or else fminunc uses the
medium-scale algorithm. For information on
choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default value is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed, a
positive integer. The default value is 400.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.
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PlotFcns Plots various measures of progress while the
algorithm executes. Select from predefined plots
or write your own. Pass a function handle or
a cell array of function handles. The default is
none ([]).

• @optimplotx plots the current point.

• @optimplotfunccount plots the function
count.

• @optimplotfval plots the function value.

• @optimplotstepsize plots the step size.

• @optimplotfirstorderopt plots the
first-order optimality measure.

For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6.

TolX Termination tolerance on x, a positive scalar. The
default value is 1e-6.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value
is ones(numberofvariables,1). fminunc
uses TypicalX for scaling finite differences for
gradient estimation.

The trust-region algorithm uses TypicalX only
for the DerivativeCheck option.

trust-region Algorithm Only

The trust-region algorithm uses the following options:
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Hessian If 'on', fminunc uses a user-defined Hessian
for the objective function. The Hessian is either
defined in the objective function (see fun), or is
indirectly defined when using HessMult.

If 'off' (default), fminunc approximates the
Hessian using finite differences.

HessMult Function handle for Hessian multiply function.
For large-scale structured problems, this
function computes the Hessian matrix product
H*Y without actually forming H. The function
is of the form

W = hmfun(Hinfo,Y)

where Hinfo contains the matrix used to
compute H*Y.

The first argument must be the same as the
third argument returned by the objective
function fun, for example by

[f,g,Hinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. W =
H*Y although H is not formed explicitly. fminunc
uses Hinfo to compute the preconditioner. See
“Passing Extra Parameters” on page 2-53 for
information on how to supply values for any
additional parameters hmfun needs.

Note 'Hessian' must be set to 'on' for
fminunc to pass Hinfo from fun to hmfun.
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See “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-80 for an
example.

HessPattern Sparsity pattern of the Hessian for finite
differencing. Set HessPattern(i,j) = 1 when
you can have ∂2fun/∂x(i)∂x(j) ≠ 0. Otherwise,
set HessPattern(i,j) = 0.

Use HessPattern when it is inconvenient to
compute the Hessian matrix H in fun, but you
can determine (say, by inspection) when the ith
component of the gradient of fun depends on
x(j). fminunc can approximate H via sparse
finite differences (of the gradient) if you provide
the sparsity structure of H— i.e., locations of the
nonzeros — as the value for HessPattern.

In the worst case, when the structure is
unknown, do not set HessPattern. The default
behavior is as if HessPattern is a dense
matrix of ones. Then fminunc computes a
full finite-difference approximation in each
iteration. This can be very expensive for large
problems, so it is usually better to determine
the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Algorithms” on page
10-109.
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PrecondBandWidth Upper bandwidth of preconditioner for PCG, a
nonnegative integer. By default, fminunc uses
diagonal preconditioning (upper bandwidth
of 0). For some problems, increasing the
bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to Inf
uses a direct factorization (Cholesky) rather
than the conjugate gradients (CG). The direct
factorization is computationally more expensive
than CG, but produces a better quality step
towards the solution.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

quasi-newton Algorithm Only

The quasi-newton algorithm uses the following options:

HessUpdate Method for choosing the search direction in the
Quasi-Newton algorithm. The choices are:

• 'bfgs', the default

• 'dfp'

• 'steepdesc'

See “Hessian Update” on page 6-13 for a
description of these methods.

InitialHessMatrix Initial quasi-Newton matrix. This option is
only available if you set InitialHessType to
'user-supplied'. In that case, you can set
InitialHessMatrix to one of the following:

• A positive scalar — The initial matrix is the
scalar times the identity.
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• A vector of positive values— The initial
matrix is a diagonal matrix with the entries
of the vector on the diagonal. This vector
should be the same size as the x0 vector, the
initial point.

InitialHessType Initial quasi-Newton matrix type. The options
are:

• 'identity'

• 'scaled-identity', the default

• 'user-supplied' — See
InitialHessMatrix

ObjectiveLimit A tolerance (stopping criterion) that is a scalar.
If the objective function value at an iteration
is less than or equal to ObjectiveLimit, the
iterations halt, since the problem is presumably
unbounded. The default value is -1e20.

Examples Minimize the function f x x x x x( ) = + +3 21
2

1 2 2
2 .

Create a file myfun.m:

function f = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function

Then call fminunc to find a minimum of myfun near [1,1]:

x0 = [1,1];
[x,fval] = fminunc(@myfun,x0);

After a few iterations, fminunc returns the solution, x, and the value
of the function at x, fval:

x,fval
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x =
1.0e-006 *

0.2541 -0.2029

fval =
1.3173e-013

To minimize this function with the gradient provided, modify myfun.m
so the gradient is the second output argument:

function [f,g] = myfun(x)
f = 3*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % Cost function
if nargout > 1

g(1) = 6*x(1)+2*x(2);
g(2) = 2*x(1)+2*x(2);

end

Indicate that the gradient value is available by creating optimization
options with the GradObj option set to 'on' using optimoptions.

options = optimoptions('fminunc','GradObj','on');
x0 = [1,1];
[x,fval] = fminunc(@myfun,x0,options);

After several iterations fminunc returns the solution, x, and the value
of the function at x, fval:

x,fval

x =
1.0e-015 *

0.1110 -0.8882

fval =
6.2862e-031

To minimize the function f(x) = sin(x) + 3 using an anonymous
function
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f = @(x)sin(x)+3;
x = fminunc(f,4);

fminunc returns a solution

x

x =
4.7124

Notes fminunc is not the preferred choice for solving problems that are sums
of squares, that is, of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

Instead use the lsqnonlin function, which has been optimized for
problems of this form.

To use the trust-region method, you must provide the gradient in
fun (and set the GradObj option to 'on' using optimoptions). A
warning is given if no gradient is provided and the Algorithm option
is 'trust-region'.

Algorithms Trust Region Algorithm

By default fminunc chooses the trust-region algorithm if you supply
the gradient in fun and set GradObj to 'on' using optimoptions.
This algorithm is a subspace trust-region method and is based on
the interior-reflective Newton method described in [2] and [3]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG). See
“fminunc trust-region Algorithm” on page 6-5, “Trust-Region Methods
for Nonlinear Minimization” on page 6-5 and “Preconditioned Conjugate
Gradient Method” on page 6-8pt.
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Quasi-Newton Algorithm

The quasi-newton algorithm uses the BFGS Quasi-Newton method
with a cubic line search procedure. This quasi-Newton method uses the
BFGS ([1],[5],[8], and [9]) formula for updating the approximation of the
Hessian matrix. You can select the DFP ([4],[6], and [7]) formula, which
approximates the inverse Hessian matrix, by setting the HessUpdate
option to 'dfp' (and the Algorithm option to 'quasi-newton'). You can
select a steepest descent method by setting HessUpdate to 'steepdesc'
(and Algorithm to 'quasi-newton'), although this is not recommended.

Limitations The function to be minimized must be continuous. fminunc might only
give local solutions.

fminunc only minimizes over the real numbers, that is, x must only
consist of real numbers and f(x) must only return real numbers. When x
has complex variables, they must be split into real and imaginary parts.

Trust Region Optimization

To use the trust-region algorithm, you must supply the gradient in
fun (and GradObj must be set 'on' in options).

Trust Region Algorithm Coverage and Requirements

Additional Information
Needed For Large Problems

Must provide gradient for f(x)
in fun.

• Provide sparsity structure of the Hessian, or compute
the Hessian in fun.

• The Hessian should be sparse.
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Purpose Find minimum of semi-infinitely constrained multivariable nonlinear
function

Equation Finds the minimum of a problem specified by

min ( )

,
,

,
( ) ,
( )

x
f x

A x b
Aeq x beq
lb x ub
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ceq x
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b and beq are vectors, A and Aeq are matrices, c(x), ceq(x), and Ki(x,wi)
are functions that return vectors, and f(x) is a function that returns a
scalar. f(x), c(x), and ceq(x) can be nonlinear functions. The vectors
(or matrices) Ki(x,wi) ≤ 0 are continuous functions of both x and an
additional set of variables w1,w2,...,wn. The variables w1,w2,...,wn are
vectors of, at most, length two.

x, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

Syntax x = fseminf(fun,x0,ntheta,seminfcon)
x = fseminf(fun,x0,ntheta,seminfcon,A,b)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
x = fseminf(problem)
[x,fval] = fseminf(...)
[x,fval,exitflag] = fseminf(...)
[x,fval,exitflag,output] = fseminf(...)
[x,fval,exitflag,output,lambda] = fseminf(...)

Description fseminf finds a minimum of a semi-infinitely constrained scalar
function of several variables, starting at an initial estimate. The aim
is to minimize f(x) so the constraints hold for all possible values of

10-112



fseminf

wiℜ1 (or wiℜ2). Because it is impossible to calculate all possible values
of Ki(x,wi), a region must be chosen for wi over which to calculate an
appropriately sampled set of values.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function and nonlinear constraint
functions, if necessary.

x = fseminf(fun,x0,ntheta,seminfcon) starts at x0 and finds a
minimum of the function fun constrained by ntheta semi-infinite
constraints defined in seminfcon.

x = fseminf(fun,x0,ntheta,seminfcon,A,b) also tries to satisfy
the linear inequalities A*x b.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq) minimizes
subject to the linear equalities Aeq*x = beq as well. Set A = [] and
b = [] if no inequalities exist.

x = fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub)
defines a set of lower and upper bounds on the design variables in x, so
that the solution is always in the range lb ≤ x ≤ ub.

Note See “Iterations Can Violate Constraints” on page 2-34.

x =
fseminf(fun,x0,ntheta,seminfcon,A,b,Aeq,beq,lb,ub,options)
minimizes with the optimization options specified in options. Use
optimoptions to set these options.

x = fseminf(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-114.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.
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[x,fval] = fseminf(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fseminf(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fseminf(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = fseminf(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fseminf. This section provides function-specific
details for fun, ntheta, options, seminfcon, and problem:

fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun
can be specified as a function handle for a file

x = fseminf(@myfun,x0,ntheta,seminfcon)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

fun = @(x)sin(x''*x);

If the gradient of fun can also be computed and the GradObj option is
'on', as set by
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options = optimoptions('fseminf','GradObj','on')

then the function fun must return, in the second output argument, the
gradient value g, a vector, at x.

ntheta The number of semi-infinite constraints.

options “Options” on page 10-118 provides the function-specific details for the
options values.

seminfcon The function that computes the vector of nonlinear inequality constraints,
c, a vector of nonlinear equality constraints, ceq, and ntheta semi-infinite
constraints (vectors or matrices) K1, K2,..., Kntheta evaluated over
an interval S at the point x. The function seminfcon can be specified
as a function handle.

x = fseminf(@myfun,x0,ntheta,@myinfcon)

where myinfcon is a MATLAB function such as

function [c,ceq,K1,K2,...,Kntheta,S] = myinfcon(x,S)

% Initial sampling interval

if isnan(S(1,1)),

S = ...% S has ntheta rows and 2 columns

end

w1 = ...% Compute sample set

w2 = ...% Compute sample set

...

wntheta = ... % Compute sample set

K1 = ... % 1st semi-infinite constraint at x and w

K2 = ... % 2nd semi-infinite constraint at x and w

...

Kntheta = ...% Last semi-infinite constraint at x and w

c = ... % Compute nonlinear inequalities at x

ceq = ... % Compute the nonlinear equalities at x

S is a recommended sampling interval, which might or might not be used.
Return [] for c and ceq if no such constraints exist.
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The vectors or matrices K1, K2, ..., Kntheta contain the semi-infinite
constraints evaluated for a sampled set of values for the independent
variables w1, w2, ... wntheta, respectively. The two-column matrix, S,
contains a recommended sampling interval for values of w1, w2, ...,
wntheta, which are used to evaluate K1, K2, ..., Kntheta. The ith row of
S contains the recommended sampling interval for evaluating Ki. When
Ki is a vector, use only S(i,1) (the second column can be all zeros). When
Ki is a matrix, S(i,2) is used for the sampling of the rows in Ki, S(i,1) is
used for the sampling interval of the columns of Ki (see “Two-Dimensional
Semi-Infinite Constraint” on page 6-103). On the first iteration S is NaN,
so that some initial sampling interval must be determined by seminfcon.

Note Because Optimization Toolbox functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must
return outputs of type double.

“Passing Extra Parameters” on page 2-53 explains how to parameterize
seminfcon, if necessary. “Example of Creating Sampling Points” on page
6-49 contains an example of both one- and two-dimensional sampling
points.

objective Objective function

x0 Initial point for x

ntheta Number of semi-infinite constraints

seminfcon Semi-infinite constraint function

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

problem
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ub Vector of upper bounds

solver 'fseminf'

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fseminf. This section provides function-specific
details for exitflag, lambda, and output:

Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

4 Magnitude of the search direction
was less than the specified tolerance
and constraint violation was less than
options.TolCon.

5 Magnitude of directional derivative
was less than the specified tolerance
and constraint violation was less than
options.TolCon.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

-1 Algorithm was terminated by the
output function.

exitflag

-2 No feasible point was found.
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Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields of the
structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

ineqnonlin Nonlinear inequalities

lambda

eqnonlin Nonlinear equalities

Structure containing information about the optimization.
The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

lssteplength Size of line search step relative to
search direction

stepsize Final displacement in x

algorithm Optimization algorithm used

constrviolation Maximum of constraint functions

firstorderopt Measure of first-order optimality

output

message Exit message

Options Optimization options used by fseminf. Use optimoptions to set or
change options. See “Optimization Options Reference” on page 9-7
for detailed information.
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DerivativeCheck Compare user-supplied derivatives
(gradients of objective or constraints)
to finite-differencing derivatives. The
choices are 'on' or the default 'off'.

Diagnostics Display diagnostic information about the
function to be minimized or solved. The
choices are 'on' or the default 'off'.

DiffMaxChange Maximum change in variables for
finite-difference gradients (a positive
scalar). The default is Inf.

DiffMinChange Minimum change in variables for
finite-difference gradients (a positive
scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each
iteration, and gives the default exit
message.

• 'iter-detailed' displays output at
each iteration, and gives the technical
exit message.

• 'notify' displays output only if the
function does not converge, and gives
the default exit message.

• 'notify-detailed' displays output
only if the function does not converge,
and gives the technical exit message.

• 'final' (default) displays just the
final output, and gives the default exit
message.
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• 'final-detailed' displays just the
final output, and gives the technical
exit message.

FinDiffRelStep Scalar or vector step size factor. When
you set FinDiffRelStep to a vector v,
forward finite differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a
vector. The default is sqrt(eps) for
forward finite differences, and eps^(1/3)
for central finite differences.

FinDiffType Finite differences, used to estimate
gradients, are either 'forward' (the
default), or 'central' (centered).
'central' takes twice as many function
evaluations, but should be more accurate.

The algorithm is careful to obey bounds
when estimating both types of finite
differences. So, for example, it could
take a backward, rather than a forward,
difference to avoid evaluating at a point
outside bounds.
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FunValCheck Check whether objective function and
constraints values are valid. 'on'
displays an error when the objective
function or constraints return a value
that is complex, Inf, or NaN. The default
'off' displays no error.

GradObj Gradient for the objective function
defined by the user. See the preceding
description of fun to see how to define
the gradient in fun. Set to 'on' to have
fseminf use a user-defined gradient of
the objective function. The default 'off'
causes fseminf to estimate gradients
using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed,
a positive integer. The default is 400.

MaxSQPIter Maximum number of SQP iterations
allowed, a positive integer. The default
is 10*max(numberOfVariables,
numberOfInequalities +
numberOfBounds).

OutputFcn Specify one or more user-defined
functions that an optimization function
calls at each iteration, either as a function
handle or as a cell array of function
handles. The default is none ([]). See
“Output Function” on page 9-21.
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PlotFcns Plots various measures of progress while
the algorithm executes, select from
predefined plots or write your own. Pass a
function handle or a cell array of function
handles. The default is none ([]):

• @optimplotx plots the current point.

• @optimplotfunccount plots the
function count.

• @optimplotfval plots the function
value.

• @optimplotconstrviolation plots
the maximum constraint violation.

• @optimplotstepsize plots the step
size.

• @optimplotfirstorderopt plots the
first-order optimality measure.

For information on writing a custom plot
function, see “Plot Functions” on page
9-30.

RelLineSrchBnd Relative bound (a real nonnegative scalar
value) on the line search step length
such that the total displacement in
x satisfies |Δx(i)| ≤ relLineSrchBnd·
max(|x(i)|,|typicalx(i)|). This option
provides control over the magnitude of the
displacements in x for cases in which the
solver takes steps that fseminf considers
too large. The default is no bounds ([]).

RelLineSrchBndDuration Number of iterations for which the bound
specified in RelLineSrchBnd should be
active (default is 1)
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TolCon Termination tolerance on the constraint
violation, a positive scalar. The default
is 1e-6.

TolConSQP Termination tolerance on inner iteration
SQP constraint violation, a positive
scalar. The default is 1e-6.

TolFun Termination tolerance on the function
value, a positive scalar. The default is
1e-4.

TolX Termination tolerance on x, a positive
scalar. The default value is 1e-4.

TypicalX Typical x values. The number of
elements in TypicalX is equal to
the number of elements in x0, the
starting point. The default value is
ones(numberofvariables,1). fseminf
uses TypicalX for scaling finite
differences for gradient estimation.

Notes The optimization routine fseminf might vary the recommended
sampling interval, S, set in seminfcon, during the computation
because values other than the recommended interval might be more
appropriate for efficiency or robustness. Also, the finite region wi, over
which Ki(x,wi) is calculated, is allowed to vary during the optimization,
provided that it does not result in significant changes in the number
of local minima in Ki(x,wi).

Examples This example minimizes the function

(x – 1)2,

subject to the constraints
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0 ≤ x ≤ 2
g(x, t) = (x – 1/2) – (t – 1/2)2 ≤ 0 for all 0 ≤ t ≤ 1.

The unconstrained objective function is minimized at x = 1. However,
the constraint,

g(x, t) ≤ 0 for all 0 ≤ t ≤ 1,

implies x ≤ 1/2. You can see this by noticing that (t – 1/2)2 ≥ 0, so

maxt g(x, t) = (x– 1/2).

Therefore

maxt g(x, t) ≤ 0 when x ≤ 1/2.

To solve this problem using fseminf:

1 Write the objective function as an anonymous function:

objfun = @(x)(x-1)^2;

2 Write the semi-infinite constraint function, which includes the
nonlinear constraints ([ ] in this case), initial sampling interval for t
(0 to 1 in steps of 0.01 in this case), and the semi-infinite constraint
function g(x, t):

function [c, ceq, K1, s] = seminfcon(x,s)

% No finite nonlinear inequality and equality constraints
c = [];
ceq = [];

% Sample set
if isnan(s)

% Initial sampling interval
s = [0.01 0];

end
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t = 0:s(1):1;

% Evaluate the semi-infinite constraint
K1 = (x - 0.5) - (t - 0.5).^2;

3 Call fseminf with initial point 0.2, and view the result:

x = fseminf(objfun,0.2,1,@seminfcon)

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the
default value of the function tolerance, and constraints
are satisfied to within the default value of the
constraint tolerance.

Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1

x =
0.5000

Algorithms fseminf uses cubic and quadratic interpolation techniques to estimate
peak values in the semi-infinite constraints. The peak values are used
to form a set of constraints that are supplied to an SQP method as in the
fmincon function. When the number of constraints changes, Lagrange
multipliers are reallocated to the new set of constraints.

The recommended sampling interval calculation uses the difference
between the interpolated peak values and peak values appearing in the
data set to estimate whether the function needs to take more or fewer
points. The function also evaluates the effectiveness of the interpolation
by extrapolating the curve and comparing it to other points in the curve.
The recommended sampling interval is decreased when the peak values
are close to constraint boundaries, i.e., zero.
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For more details on the algorithm used and the types of procedures
displayed under the Procedures heading when the Display option is
set to 'iter' with optimoptions, see also “SQP Implementation” on
page 6-35. For more details on the fseminf algorithm, see “fseminf
Problem Formulation and Algorithm” on page 6-47.

Limitations The function to be minimized, the constraints, and semi-infinite
constraints, must be continuous functions of x and w. fseminf might
only give local solutions.

When the problem is not feasible, fseminf attempts to minimize the
maximum constraint value.

See Also fmincon | optimoptions | optimtool

How To • function_handle

• “fseminf Problem Formulation and Algorithm” on page 6-47

• “Constrained Optimization”
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Purpose Solve system of nonlinear equations

Equation Solves a problem specified by

F(x) = 0

for x, where F(x) is a function that returns a vector value.

x is a vector or a matrix; see “Matrix Arguments” on page 2-32.

Syntax x = fsolve(fun,x0)
x = fsolve(fun,x0,options)
x = fsolve(problem)
[x,fval] = fsolve(fun,x0)
[x,fval,exitflag] = fsolve(...)
[x,fval,exitflag,output] = fsolve(...)
[x,fval,exitflag,output,jacobian] = fsolve(...)

Description fsolve finds a root (zero) of a system of nonlinear equations.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the system of equations, if necessary.

x = fsolve(fun,x0) starts at x0 and tries to solve the equations
described in fun.

x = fsolve(fun,x0,options) solves the equations with the
optimization options specified in options. Use optimoptions to set
these options.

x = fsolve(problem) solves problem, where problem is a structure
described in “Input Arguments” on page 10-128.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.
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[x,fval] = fsolve(fun,x0) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fsolve(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = fsolve(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,jacobian] = fsolve(...) returns the
Jacobian of fun at the solution x.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into fsolve. This section provides function-specific
details for fun and problem:

fun The nonlinear system of equations to solve. fun is a function that accepts a
vector x and returns a vector F, the nonlinear equations evaluated at x. The
function fun can be specified as a function handle for a file

x = fsolve(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)

F = ... % Compute function values at x

fun can also be a function handle for an anonymous function.

x = fsolve(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they are converted to a
vector using linear indexing.

If the Jacobian can also be computed and the Jacobian option is 'on', set by

options = optimoptions('fsolve','Jacobian','on')
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the function fun must return, in a second output argument, the Jacobian
value J, a matrix, at x.

If fun returns a vector (matrix) of m components and x has length n, where
n is the length of x0, the Jacobian J is an m-by-n matrix where J(i,j) is
the partial derivative of F(i) with respect to x(j). (The Jacobian J is the
transpose of the gradient of F.)

objective Objective function

x0 Initial point for x

solver 'fsolve'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by fsolve. For more information on the output
headings for fsolve, see “Function-Specific Headings” on page 3-18.

This section provides function-specific details for exitflag and output:

Integer identifying the reason the algorithm terminated.
The following lists the values of exitflag and the
corresponding reasons the algorithm terminated.

1 Function converged to a solution x.

2 Change in x was smaller than the
specified tolerance.

3 Change in the residual was smaller
than the specified tolerance.

4 Magnitude of search direction was
smaller than the specified tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

exitflag
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-1 Output function terminated the
algorithm.

-2 Algorithm appears to be converging to
a point that is not a root.

-3 Trust region radius became too small
(trust-region-dogleg algorithm).

-4 Line search cannot sufficiently
decrease the residual along the
current search direction.

Structure containing information about the
optimization. The fields of the structure are

iterations Number of iterations taken

funcCount Number of function evaluations

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region-reflective algorithm only)

stepsize Final displacement in x
(Levenberg-Marquardt algorithm)

firstorderopt Measure of first-order optimality
(dogleg or trust-region-reflective
algorithm, [ ] for others)

output

message Exit message

Options Optimization options used by fsolve. Some options apply
to all algorithms, some are only relevant when using the
trust-region-reflective algorithm, and others are only relevant when
using the other algorithms. Use optimoptions to set or change
options. See “Optimization Options Reference” on page 9-7 for detailed
information.
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All Algorithms

All algorithms use the following options:

Algorithm Choose between 'trust-region-dogleg'
(default), 'trust-region-reflective',
and 'levenberg-marquardt'. Set the
initial Levenberg-Marquardt parameter λ
by setting Algorithm to a cell array such as
{'levenberg-marquardt',.005}. The default
λ = 0.01.

The Algorithm option specifies a preference for
which algorithm to use. It is only a preference
because for the trust-region-reflective algorithm,
the nonlinear system of equations cannot
be underdetermined; that is, the number of
equations (the number of elements of F returned
by fun) must be at least as many as the length
of x. Similarly, for the trust-region-dogleg
algorithm, the number of equations must be
the same as the length of x. fsolve uses the
Levenberg-Marquardt algorithm when the
selected algorithm is unavailable. For more
information on choosing the algorithm, see
“Choosing the Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients
of objective or constraints) to finite-differencing
derivatives. The choices are 'on' or the default
'off'.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on'
or the default 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.
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DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration, and
gives the default exit message.

• 'iter-detailed' displays output at each
iteration, and gives the technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor. When you set
FinDiffRelStep to a vector v, forward finite
differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.
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FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (default), or 'central'
(centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.

FunValCheck Check whether objective function values are
valid. 'on' displays an error when the objective
function returns a value that is complex, Inf, or
NaN. The default, 'off', displays no error.

Jacobian If 'on', fsolve uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function.
If 'off' (default), fsolve approximates the
Jacobian using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed, a positive
integer. The default is 400.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.
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PlotFcns Plots various measures of progress while the
algorithm executes. Select from predefined plots
or write your own. Pass a function handle or a
cell array of function handles. The default is none
([]):

• @optimplotx plots the current point.

• @optimplotfunccount plots the function count.

• @optimplotfval plots the function value.

• @optimplotresnorm plots the norm of the
residuals.

• @optimplotstepsize plots the step size.

• @optimplotfirstorderopt plots the first-order
optimality measure.

For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6.

TolX Termination tolerance on x, a positive scalar. The
default is 1e-6.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value
is ones(numberofvariables,1). fsolve uses
TypicalX for scaling finite differences for gradient
estimation.

The trust-region-dogleg algorithm uses
TypicalX as the diagonal terms of a scaling
matrix.

Trust-Region-Reflective Algorithm Only

The trust-region-reflective algorithm uses the following options:
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JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this
function computes the Jacobian matrix product
J*Y, J'*Y, or J'*(J*Y) without actually forming
J. The function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfomust be the same as the second argument
returned by the objective function fun, for
example, in

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0, W = J'*(J*Y).

• If flag > 0, W = J*Y.

• If flag < 0, W = J'*Y.

In each case, J is not formed explicitly. fsolve
uses Jinfo to compute the preconditioner. See
“Passing Extra Parameters” on page 2-53 for
information on how to supply values for any
additional parameters jmfun needs.

Note 'Jacobian' must be set to 'on' for
fsolve to pass Jinfo from fun to jmfun.
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See “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-80 for a
similar example.

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. Set JacobPattern(i,j) = 1
when fun(i) depends on x(j). Otherwise,
set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have
∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient
to compute the Jacobian matrix J in fun,
though you can determine (say, by inspection)
when fun(i) depends on x(j). fsolve can
approximate J via sparse finite differences when
you give JacobPattern.

In the worst case, if the structure is unknown,
do not set JacobPattern. The default behavior
is as if JacobPattern is a dense matrix of ones.
Then fsolve computes a full finite-difference
approximation in each iteration. This can
be very expensive for large problems, so it
is usually better to determine the sparsity
structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Algorithms” on page
10-140.
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PrecondBandWidth Upper bandwidth of preconditioner for
PCG, a nonnegative integer. The default
PrecondBandWidth is Inf, which means a
direct factorization (Cholesky) is used rather
than the conjugate gradients (CG). The direct
factorization is computationally more expensive
than CG, but produces a better quality step
towards the solution. Set PrecondBandWidth
to 0 for diagonal preconditioning (upper
bandwidth of 0). For some problems, an
intermediate bandwidth reduces the number of
PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

Levenberg-Marquardt Algorithm Only

The Levenberg-Marquardt algorithm uses the following option:

ScaleProblem 'Jacobian' can sometimes improve the
convergence of a poorly scaled problem. The
default is 'none'.

Examples Example 1

This example solves the system of two equations and two unknowns:

2
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1 2
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Rewrite the equations in the form F(x) = 0:
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Start your search for a solution at x0 = [-5 -5].

First, write a file that computes F, the values of the equations at x.

function F = myfun(x)
F = [2*x(1) - x(2) - exp(-x(1));

-x(1) + 2*x(2) - exp(-x(2))];

Save this function file as myfun.m somewhere on your MATLAB path.
Next, set up the initial point and options and call fsolve:

x0 = [-5; -5]; % Make a starting guess at the solution

options = optimoptions('fsolve','Display','iter'); % Option to display output

[x,fval] = fsolve(@myfun,x0,options) % Call solver

After several iterations, fsolve finds an answer:

Norm of First-order Trust-region

Iteration Func-count f(x) step optimality radius

0 3 23535.6 2.29e+004 1

1 6 6001.72 1 5.75e+003 1

2 9 1573.51 1 1.47e+003 1

3 12 427.226 1 388 1

4 15 119.763 1 107 1

5 18 33.5206 1 30.8 1

6 21 8.35208 1 9.05 1

7 24 1.21394 1 2.26 1

8 27 0.016329 0.759511 0.206 2.5

9 30 3.51575e-006 0.111927 0.00294 2.5

10 33 1.64763e-013 0.00169132 6.36e-007 2.5

Equation solved.

fsolve completed because the vector of function values is near zero

as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

x =
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0.5671

0.5671

fval =

1.0e-006 *

-0.4059

-0.4059

Example 2

Find a matrix x that satisfies the equation

X X X* * ,=
⎡

⎣
⎢

⎤

⎦
⎥

1 2
3 4

starting at the point x= [1,1; 1,1].

First, write a file that computes the equations to be solved.

function F = myfun(x)
F = x*x*x-[1,2;3,4];

Save this function file as myfun.m somewhere on your MATLAB path.
Next, set up an initial point and options and call fsolve:

x0 = ones(2,2); % Make a starting guess at the solution
options = optimoptions('fsolve','Display','off'); % Turn off display
[x,Fval,exitflag] = fsolve(@myfun,x0,options)

The solution is

x =
-0.1291 0.8602
1.2903 1.1612

Fval =
1.0e-009 *
-0.1621 0.0780
0.1167 -0.0465
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exitflag =
1

and the residual is close to zero.

sum(sum(Fval.*Fval))
ans =

4.8133e-20

Notes If the system of equations is linear, use\ (matrix left division) for better
speed and accuracy. For example, to find the solution to the following
linear system of equations:

3x1 + 11x2 – 2x3 = 7
x1 + x2 – 2x3 = 4
x1 – x2 + x3 = 19.

Formulate and solve the problem as

A = [ 3 11 -2; 1 1 -2; 1 -1 1];
b = [ 7; 4; 19];
x = A\b
x =

13.2188
-2.3438
3.4375

Algorithms The Levenberg-Marquardt and trust-region-reflective methods are
based on the nonlinear least-squares algorithms also used in lsqnonlin.
Use one of these methods if the system may not have a zero. The
algorithm still returns a point where the residual is small. However, if
the Jacobian of the system is singular, the algorithm might converge to a
point that is not a solution of the system of equations (see “Limitations”
on page 10-141 and “Diagnostics” on page 10-141 following).

• By default fsolve chooses the trust-region dogleg algorithm. The
algorithm is a variant of the Powell dogleg method described in [8].
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It is similar in nature to the algorithm implemented in [7]. See
“Trust-Region Dogleg Method” on page 6-252.

• The trust-region-reflective algorithm is a subspace trust-region
method and is based on the interior-reflective Newton method
described in [1] and [2]. Each iteration involves the approximate
solution of a large linear system using the method of preconditioned
conjugate gradients (PCG). See “Trust-Region Reflective fsolve
Algorithm” on page 6-249.

• The Levenberg-Marquardt method is described in references [4], [5],
and [6]. See “Levenberg-Marquardt Method” on page 6-255.

Diagnostics All Algorithms

fsolve may converge to a nonzero point and give this message:

Optimizer is stuck at a minimum that is not a root
Try again with a new starting guess

In this case, run fsolve again with other starting values.

Trust-Region-Dogleg Algorithm

For the trust-region dogleg method, fsolve stops if the step size
becomes too small and it can make no more progress. fsolve gives
this message:

The optimization algorithm can make no further progress:
Trust region radius less than 10*eps

In this case, run fsolve again with other starting values.

Limitations The function to be solved must be continuous. When successful, fsolve
only gives one root. fsolve may converge to a nonzero point, in which
case, try other starting values.

fsolve only handles real variables. When x has complex variables, the
variables must be split into real and imaginary parts.
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Trust-Region-Reflective Algorithm

The preconditioner computation used in the preconditioned conjugate
gradient part of the trust-region-reflective algorithm forms JTJ (where J
is the Jacobian matrix) before computing the preconditioner; therefore,
a row of J with many nonzeros, which results in a nearly dense product
JTJ, might lead to a costly solution process for large problems.

Trust-Region-Reflective Problem Coverage and Requirements

For Large Problems

• Provide sparsity structure of the Jacobian or compute the Jacobian
in fun.

• The Jacobian should be sparse.

Number of Equations

The default trust-region dogleg method can only be used when the
system of equations is square, i.e., the number of equations equals
the number of unknowns. For the Levenberg-Marquardt method, the
system of equations need not be square.

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.

[3] Dennis, J. E. Jr., “Nonlinear Least-Squares,” State of the Art in
Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269-312.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in
Least-Squares,” Quarterly Applied Mathematics 2, pp. 164-168, 1944.
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[5] Marquardt, D., “An Algorithm for Least-squares Estimation of
Nonlinear Parameters,” SIAM Journal Applied Mathematics, Vol. 11,
pp. 431-441, 1963.

[6] Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, pp. 105-116, 1977.

[7] Moré, J. J., B. S. Garbow, and K. E. Hillstrom, User Guide for
MINPACK 1, Argonne National Laboratory, Rept. ANL-80-74, 1980.

[8] Powell, M. J. D., “A Fortran Subroutine for Solving Systems of
Nonlinear Algebraic Equations,” Numerical Methods for Nonlinear
Algebraic Equations, P. Rabinowitz, ed., Ch.7, 1970.

See Also \ | lsqcurvefit | lsqnonlin | optimoptions | optimtool

How To • function_handle

• “Anonymous Functions”

• “Systems of Nonlinear Equations”
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Purpose Root of nonlinear function

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)

x = fzero(problem)

[x,fval,exitflag,output] = fzero( ___ )

Description x = fzero(fun,x0) tries to find a point x where fun(x) = 0. This
solution is where fun(x) changes sign—fzero cannot find a root of a
function such as x^2.

x = fzero(fun,x0,options) uses options to modify the solution
process.

x = fzero(problem) solves a root-finding problem specified by
problem.

[x,fval,exitflag,output] = fzero( ___ ) returns fun(x) in the
fval output, exitflag encoding the reason fzero stopped, and an
output structure containing information on the solution process.

Input
Arguments

fun - Function to solve
function handle

Function to solve, specified as a handle to a scalar-valued function. fun
accepts a scalar x and returns a scalar fun(x).

fzero solves fun(x) = 0. To solve an equation fun(x) = c(x), instead
solve fun2(x) = fun(x) - c(x) = 0.

To include extra parameters in your function, see the example “Root
of Function with Extra Parameter” on page 10-150 and the section
“Passing Extra Parameters” on page 2-53.

Example: @sin
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Example: @myFunction

Example: @(x)(x-a)^5 - 3*x + a - 1

Data Types
function_handle

x0 - Initial value
scalar | 2-element vector

Initial value, specified as a real scalar or a 2-element real vector.

• Scalar — fzero begins at x0 and tries to locate a point x1 where
fun(x1) has the opposite sign of fun(x0). Then fzero iteratively
shrinks the interval where fun changes sign to reach a solution.

• 2-element vector — fzero checks that fun(x0(1)) and fun(x0(2))
have opposite signs, and errors if they do not. It then iteratively
shrinks the interval where fun changes sign to reach a solution. An
interval x0 must be finite; it cannot contain ±Inf.

Tip Calling fzero with an interval (x0 with two elements) is often
faster than calling it with a scalar x0.

Example: 3

Example: [2,17]

Data Types
double

options - Options for solution process
structure, typically created using optimset

Options for solution process, specified as a structure. Create or modify
the options structure using optimset. fzero uses these options
structure fields.
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Display Level of display:

• 'off' displays no output.

• 'iter' displays output at each iteration.

• 'final' displays just the final output.

• 'notify' (default) displays output only if the
function does not converge.

FunValCheck Check whether objective function values are valid.

• 'on' displays an error when the objective function
returns a value that is complex, Inf, or NaN.

• The default, 'off', displays no error.

OutputFcn Specify one or more user-defined functions that an
optimization function calls at each iteration, either
as a function handle or as a cell array of function
handles. The default is none ([]). See “Output
Function” on page 9-21.

PlotFcns Plot various measures of progress while the
algorithm executes. Select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]).

• @optimplotx plots the current point.

• @optimplotfval plots the function value.
For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolX Termination tolerance on x, a positive scalar. The
default is eps, 2.2204e–16.

Example: options = optimset('FunValCheck','on')

Data Types
struct
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problem - Root-finding problem
structure

Root-finding problem, specified as a structure with all of the following
fields.

objective Objective function

x0 Initial point for x, scalar or 2-D vector

solver 'fzero'

options Options structure, typically created using
optimset

You can generate problem by exporting from Optimization app. See
“Importing and Exporting Your Work” on page 5-13 or “Solve Exported
Problem” on page 10-151.

Data Types
struct

Output
Arguments

x - Location of root or sign change
real scalar

Location of root or sign change, returned as a scalar.

fval - Function value at x
real scalar

Function value at x, returned as a scalar.

exitflag - Integer encoding the exit condition
integer

Integer encoding the exit condition, meaning the reason fsolve stopped
its iterations.
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1 Function converged to a solution x.

-1 Algorithm was terminated by the output function or plot
function.

-3 NaN or Inf function value was encountered while
searching for an interval containing a sign change.

-4 Complex function value was encountered while searching
for an interval containing a sign change.

-5 Algorithm might have converged to a singular point.

-6 fzero did not detect a sign change.

output - Information about root-finding process
structure

Information about root-finding process, returned as a structure. The
fields of the structure are:

intervaliterationsNumber of iterations taken to find an interval
containing a root

iterations Number of zero-finding iterations

funcCount Number of function evaluations

algorithm 'bisection, interpolation'

message Exit message

Examples Root Starting From One Point

Calculate π by finding the zero of the sine function near 3.

fun = @sin; % function
x0 = 3; % initial point
x = fzero(fun,x0)

x =
3.1416
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Root Starting From an Interval

Find the zero of cosine between 1 and 2.

fun = @cos; % function
x0 = [1 2]; % initial interval
x = fzero(fun,x0)

x =
1.5708

Note that cos(1) and cos(2) differ in sign.

Root of a Function Defined by a File

Find a zero of the function f(x) = x3 – 2x – 5.

First, write a file called f.m.

function y = f(x)
y = x.^3-2*x-5;

Save f.m on your MATLAB path.

Find the zero of f(x) near 2.

fun = @f; % function
x0 = 2; % initial point
z = fzero(fun,x0)

z =
2.0946

Since f(x) is a polynomial, you can find the same real zero, and a
complex conjugate pair of zeros, using the roots command.

roots([1 0 -2 -5])

ans =
2.0946

-1.0473 + 1.1359i
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-1.0473 - 1.1359i

Root of Function with Extra Parameter

Find the root of a function that has an extra parameter.

myfun = @(x,c) cos(c*x); % parameterized function
c = 2; % parameter
fun = @(x) myfun(x,c); % function of x alone
x = fzero(fun,0.1)

x =

0.7854

Nondefault Options

Plot the solution process by setting some plot functions.

Define the function and initial point.

fun = @(x)sin(cosh(x));
x0 = 1;

Examine the solution process by setting options that include plot
functions.

options = optimset('PlotFcns',{@optimplotx,@optimplotfval});

Run fzero including options.

x = fzero(fun,x0,options)

x =

1.8115
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Solve Exported Problem

Solve a problem that is defined by an export from Optimization app.

Define a problem in Optimization app. Enter optimtool('fzero'),
and fill in the problem as pictured.
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Select File > Export to Workspace, and export the problem as
pictured to a variable named problem.

Enter the following at the command line.

x = fzero(problem)

x =

1.8115
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More Information from Solution

Find the point where exp(-exp(-x)) = x, and display information
about the solution process.

fun = @(x) exp(-exp(-x)) - x; % function
x0 = [0 1]; % initial interval
options = optimset('Display','iter'); % show iterations
[x fval exitflag output] = fzero(fun,x0,options)

Func-count x f(x) Procedure
2 1 -0.307799 initial
3 0.544459 0.0153522 interpolation
4 0.566101 0.00070708 interpolation
5 0.567143 -1.40255e-08 interpolation
6 0.567143 1.50013e-12 interpolation
7 0.567143 0 interpolation

Zero found in the interval [0, 1]
x =

0.5671
fval =

0
exitflag =

1
output =

intervaliterations: 0
iterations: 5
funcCount: 7
algorithm: 'bisection, interpolation'

message: 'Zero found in the interval [0, 1]'

fval = 0 means fun(x) = 0, as desired.

Algorithms The fzero command is a function file. The algorithm, created by
T. Dekker, uses a combination of bisection, secant, and inverse quadratic
interpolation methods. An Algol 60 version, with some improvements,
is given in [1]. A Fortran version, upon which fzero is based, is in [2].
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References
[1] Brent, R., Algorithms for Minimization Without Derivatives,
Prentice-Hall, 1973.

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

See Also fminbnd | fsolve | optimset | optimtool | roots

Related
Examples

• “Roots of Scalar Functions”

Concepts • “Passing Extra Parameters” on page 2-53
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Purpose Multiplication with fundamental nullspace basis

Syntax W = fzmult(A,V)
W = fzmult(A,V,'transpose')
[W,L,U,pcol,P] = fzmult(A,V)
W = fzmult(A,V,transpose,L,U,pcol,P)

Description W = fzmult(A,V) computes the product W of matrix Z with matrix V,
that is, W = Z*V, where Z is a fundamental basis for the nullspace of
matrix A. A must be a sparse m-by-n matrix where m < n, rank(A) = m,
and rank(A(1:m,1:m)) = m. V must be p-by-q, where p = n-m. If V is
sparse W is sparse, else W is full.

W = fzmult(A,V,'transpose') computes the product of the transpose
of the fundamental basis times V, that is, W = Z'*V. V must be p-by-q,
where q = n-m. fzmult(A,V) is the same as fzmult(A,V,[]).

[W,L,U,pcol,P] = fzmult(A,V) returns the sparse LU-factorization
of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m) and
P*A1(:,pcol) = L*U.

W = fzmult(A,V,transpose,L,U,pcol,P) uses the precomputed
sparse LU factorization of matrix A(1:m,1:m), that is, A1 = A(1:m,1:m)
and P*A1(:,pcol) = L*U. transpose is either 'transpose' or [].

The nullspace basis matrix Z is not formed explicitly. An implicit
representation is used based on the sparse LU factorization of
A(1:m,1:m).
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Purpose Zero out “small” entries subject to structural rank

Syntax A = gangstr(M,tol)

Description A = gangstr(M,tol) creates matrix A of full structural rank such
that A is M except that elements of M that are relatively “small,” based
on tol, are zeros in A. The algorithm decreases tol, if needed, until
sprank(A) = sprank(M). M must have at least as many columns as
rows. Default tol is 1e-2.

gangstr identifies elements of M that are relatively less than tol by
first normalizing all the rows of M to have norm 1. It then examines
nonzeros in M in a columnwise fashion, replacing with zeros those
elements with values of magnitude less than tol times the maximum
absolute value in that column.

See Also sprank | spy
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Purpose Mixed-integer linear programming (MILP)

Syntax x = intlinprog(f,intcon,A,b)
x = intlinprog(f,intcon,A,b,Aeq,beq)
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options)
x = intlinprog(problem)
[x,fval,exitflag,output] = intlinprog( ___ )

Description Finds the minimum of a problem specified by

min

( )

x

Tf x

x
A x
Aeq x beq
lb

b
 subject to 

intcon  are integers

 


 xx ub









 .

f, x, intcon, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

You can specify f, intcon, lb, and ub as vectors or arrays. See “Matrix
Arguments” on page 2-32.

x = intlinprog(f,intcon,A,b) solves min f'*x such that the
components of x in intcon are integers, and A*x b.

x = intlinprog(f,intcon,A,b,Aeq,beq) solves the problem above
while additionally satisfying the equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) defines a set of lower
and upper bounds on the design variables, x, so that the solution is
always in the range lb x ub. Set Aeq = [] and beq = [] if no
equalities exist.
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x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options) minimizes
using the optimization options specified in options. Use optimoptions
to set these options. Set lb = [] and ub = [] if no bounds exist.

x = intlinprog(problem) uses a problem structure to encapsulate
all solver inputs.

[x,fval,exitflag,output] = intlinprog( ___ ), for any input
arguments described above, returns fval = f'*x, a value exitflag
describing the exit condition, and a structure output containing
information about the optimization process.

Input
Arguments

f - Coefficient vector
real vector

Coefficient vector, specified as a vector of doubles representing the
objective function, f'*x. The notation assumes that f is a column
vector, but you are free to use a row vector.

f can also be an array. Internally, intlinprog converts an array f
to the vector f(:).

If you specify f = [], intlinprog tries to find a feasible point without
trying to minimize an objective function.

Example: f = [4;2;-1.7];

Data Types
double

intcon - Vector of integer constraints
vector of integers

Vector of integer constraints, specified as a vector of positive integers.
The values in intcon indicate the components of the decision variable x
that are integer-valued. intcon has values from 1 through numel(f).

intcon can also be an array. Internally, intlinprog converts an array
intcon to the vector intcon(:).
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Example: intcon = [1,2,7] means x(1), x(2), and x(7) take only
integer values.

Data Types
double

A - Linear inequality constraint matrix
real matrix

Linear inequality constraint matrix, specified as a matrix of doubles.
A represents the linear coefficients in the constraints A*x ≤ b. A has
size M-by-N, where M is the number of constraints and N = numel(f).
To save memory, A can be sparse.

Example: A = [4,3;2,0;4,-1]; means three linear inequalities
(three rows) for two decision variables (two columns).

Data Types
double

b - Linear inequality constraint vector
real vector

Linear inequality constraint vector, specified as a vector of doubles. b
represents the constant vector in the constraints A*x ≤ b. b has length
M, where A is M-by-N.

Example: [4,0]

Data Types
double

Aeq - Linear equality constraint matrix
[] (default) | real matrix

Linear equality constraint matrix, specified as a matrix of doubles.
Aeq represents the linear coefficients in the constraints Aeq*x = beq.
Aeq has size Meq-by-N, where Meq is the number of constraints and N =
numel(f). To save memory, Aeq can be sparse.
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Example: A = [4,3;2,0;4,-1]; means three linear inequalities
(three rows) for two decision variables (two columns).

Data Types
double

beq - Linear equality constraint vector
[] (default) | real vector

Linear equality constraint vector, specified as a vector of doubles. beq
represents the constant vector in the constraints Aeq*x = beq. beq has
length Meq, where Aeq is Meq-by-N.

Example: [4,0]

Data Types
double

lb - Lower bounds
[] (default) | real vector or array

Lower bounds, specified as a vector or array of doubles. lb represents
the lower bounds elementwise in lb ≤ x ≤ ub.

Internally, intlinprog converts an array lb to the vector lb(:).

Example: lb = [0;-Inf;4] means x(1) 0, x(3) 4.

Data Types
double

ub - Upper bounds
[] (default) | real vector or array

Upper bounds, specified as a vector or array of doubles. ub represents
the upper bounds elementwise in lb ≤ x ≤ ub.

Internally, intlinprog converts an array ub to the vector ub(:).

Example: ub = [Inf;4;10] means x(2) 4, x(3) 10.

Data Types
double
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options - Options for intlinprog
options created using optimoptions

Options for intlinprog, specified as the output of optimoptions.

Option Description Default

BranchingRuleRule for choosing the component for
branching:
• 'maxpscost' — The fractional
component with maximum
pseudocost. See “Branch and
Bound” on page 6-161.

• 'mostfractional' — The
component whose fractional part is
closest to 1/2.

• 'maxfun' — The fractional
component with maximal
corresponding component in the
absolute value of objective vector f.

'maxpscost'

CutGenerationLevel of cut generation (see “Cut
Generation” on page 6-160):

• 'none' — No cuts. Makes
CutGenerationMaxIter irrelevant.

• 'basic'— Normal cut generation.

• 'intermediate' — Use more cut
types.

• 'advanced'— Use most cut types.

'basic'

CutGenMaxIterNumber of passes through all cut
generation methods before entering
the branch-and-bound phase, an
integer from 1 through 50. Disable
cut generation by setting the
CutGeneration option to 'none'.

10
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Option Description Default

Display Level of display (see “Iterative Display”
on page 3-17):

• 'off' or 'none' — No iterative
display

• 'final'— Show final values only

• 'iter'— Show iterative display

'iter'

Heuristics Algorithm for searching for feasible
points (see “Heuristics for Finding
Feasible Solutions” on page 6-161):

• 'none'

• 'rss'

• 'round'

• 'rins'

'rss'

HeuristicsMaxNodesStrictly positive integer that bounds
the number of nodes intlinprog can
explore in its branch-and-bound search
for feasible points. See “Heuristics for
Finding Feasible Solutions” on page
6-161.

50
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Option Description Default

IPPreprocessTypes of integer preprocessing (see
“Mixed-Integer Program Preprocessing”
on page 6-159):

• 'none' — Use very few integer
preprocessing steps.

• 'basic' — Use a moderate number
of integer preprocessing steps.

• 'advanced' — Use all available
integer preprocessing steps.

'basic'

LPMaxIter Strictly positive integer, the maximum
number of simplex algorithm iterations
per node during the branch-and-bound
process.

3e4

LPPreprocessType of preprocessing for the solution to
the relaxed linear program (see “Linear
Program Preprocessing” on page 6-158):

• 'none'— No preprocessing.

• 'basic'— Use preprocessing.

'basic'

MaxNodes Strictly positive integer that is the
maximum number of nodes intlinprog
explores in its branch-and-bound
process.

1e7

MaxNumFeasPointsStrictly positive integer. intlinprog
stops if it finds MaxNumFeasPoints
integer feasible points.

Inf

MaxTime Positive real that is the maximum time
in seconds that intlinprog runs.

7200
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Option Description Default

NodeSelectionChoose the node to explore next.
• 'simplebestproj' — Best
projection. See “Branch and
Bound” on page 6-161.

• 'minobj' — Explore the node with
the minimum objective function.

• 'mininfeas' — Explore the node
with the minimal sum of integer
infeasibilities. See “Branch and
Bound” on page 6-161.

'simplebestproj'

ObjectiveCutoffReal greater than -Inf. During
the branch-and-bound calculation,
intlinprog discards any node where
the linear programming solution
has an objective value exceeding
ObjectiveCutoff.

Inf

RelObjThresholdNonnegative real. intlinprog changes
the current feasible solution only
when it locates another with an
objective function value that is at
least RelObjThreshold lower: (fold –
fnew)/(1 + fold) > RelObjThreshold.

1e-4

RootLPAlgorithmAlgorithm for solving linear programs:
• 'dual-simplex' — Dual simplex
algorithm

• 'primal-simplex' — Primal
simplex algorithm

'dual-simplex'

RootLPMaxIterNonnegative integer that is the
maximum number of simplex algorithm
iterations to solve the initial linear
programming problem.

3e4
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Option Description Default

TolCon Real from 1e-9 through 1e-3 that
is the maximum discrepancy that
linear constraints can have and still be
considered satisfied. TolCon is not a
stopping criterion.

1e-4

TolFunLP Nonnegative real where reduced costs
must exceed TolFunLP for a variable to
be taken into the basis.

1e-7

TolGapAbs Nonnegative real. intlinprog stops if
the difference between the internally
calculated upper (U) and lower (L)
bounds on the objective function is less
than or equal to TolGapAbs:U L <=
TolGapAbs.

0

TolGapRel Real from 0 through 1. intlinprog
stops if the relative difference between
the internally calculated upper (U)
and lower (L) bounds on the objective
function is less than or equal to
TolGapRel:(U L) / (abs(U) + 1)
<= TolGapRel.

1e-4

TolInteger Real from 1e-6 through 1e-3, where
the maximum deviation from integer
that a component of the solution x can
have and still be considered an integer.
TolInteger is not a stopping criterion.

1e-5

Example: options = optimoptions('intlinprog','MaxTime',120)

problem - Structure encapsulating inputs and options
structure

Structure encapsulating the inputs and options, specified with the
following fields.

10-165



intlinprog

f Vector representing objective f'*x (required)

intcon Vector indicating variables that take integer
values (required)

Aineq Matrix in linear inequality constraints
Aineq*x ≤ bineq

bineq Vector in linear inequality constraints
Aineq*x ≤ bineq

Aeq Matrix in linear equality constraints Aeq*x = beq

beq Vector in linear equality constraints Aeq*x = beq

lb Vector of lower bounds

ub Vector of upper bounds

solver 'intlinprog' (required)

options Options created using optimoptions (required)

You must specify at least these fields in the problem structure. Other
fields are optional:

• f

• intcon

• solver

• options

Example: problem.f = [1,2,3];
problem.intcon = [2,3];
problem.options = optimoptions('intlinprog');
problem.Aineq = [-3,-2,-1];
problem.bineq = -20;
problem.lb = [-6.1,-1.2,7.3];
problem.solver = 'intlinprog';

Data Types
struct
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Output
Arguments

x - Solution
real vector

Solution, returned as a vector that minimizes f'*x subject to all bounds,
integer constraints, and linear constraints.

When a problem is infeasible or unbounded, x is [].

fval - Objective value
real scalar

Objective value, returned as the scalar value f'*x at the solution x.

When a problem is infeasible or unbounded, fval is [].

exitflag - Algorithm stopping condition
integer

Algorithm stopping condition, returned as an integer identifying the
reason the algorithm stopped. The following lists the values of exitflag
and the corresponding reasons intlinprog stopped.

2 intlinprog stopped prematurely. Integer
feasible point found.

1 intlinprog converged to the solution x.

0 intlinprog stopped prematurely. No integer
feasible point found.

-2 No feasible point found.

-3 Root LP problem is unbounded.

The exit message can give more detailed information on the reason
intlinprog stopped, such as exceeding a tolerance.

output - Solution process summary
structure

Solution process summary, returned as a structure containing
information about the optimization process.

10-167



intlinprog

relativegap Relative difference between upper (U)
and lower (L) bounds of the objective
function that intlinprog calculates in
its branch-and-bound algorithm.

relativegap = (U - L) / (abs(U) +
1)

If intcon = [], relativegap = [].

absolutegap Difference between upper and lower
bounds of the objective function
that intlinprog calculates in its
branch-and-bound algorithm.

If intcon = [], absolutegap = [].

numfeaspoints Number of integer feasible points found.

If intcon = [], numfeaspoints = [].
Also, if the initial relaxed problem is
infeasible, numfeaspoints = [].

numnodes Number of nodes in branch-and-bound
algorithm. If the solution was found
during preprocessing or during the
initial cuts, numnodes = 0.

If intcon = [], numnodes = [].

constrviolation Constraint violation that is positive for
violated constraints.

constrviolation = max([0;
norm(Aeq*x-beq, inf); (lb-x);
(x-ub); (Ai*x-bi)])

message Exit message.

Examples Solve an MILP with Linear Inequalities

Solve the problem
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min
x

x x

x
x x

x x
8

2
4

14
31 2

2

1 2

1 2



 

 
 

 subject to 

 is an integer

33
202 1 2x x









  .

Write the objective function vector and vector of integer variables.

f = [8;1];
intcon = 2;

Convert all inequalities into the form A*x <= b by multiplying “greater
than” inequalities by -1.

A = [-1,-2;
-4,-1;
2,1];

b = [14;-33;20];

Call intlinprog.

x = intlinprog(f,intcon,A,b)

LP: Optimal objective value is 59.000000.

Optimal solution found.

Intlinprog stopped at the root node because the objective value is wit
options.TolGapAbs = 0 (the default value). The intcon variables are in
options.TolInteger = 1e-05 (the default value).

x =

6.5000
7.0000
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Solve an MILP with All Types of Constraints

Solve the problem

min
,

x
x x x

x
x x
x x x

x

   
 




3 2

4

0
71 2 3

3

1 2

1 2 3

1

 subject to 

 binary

 









 2 122 3x x

Write the objective function vector and vector of integer variables.

f = [-3;-2;-1];
intcon = 3;

Write the linear inequality constraints.

A = [1,1,1];
b = 7;

Write the linear equality constraints.

Aeq = [4,2,1];
beq = 12;

Write the bound constraints.

lb = zeros(3,1);
ub = [Inf;Inf;1]; % Enforces x(3) is binary

Call intlinprog.

x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

LP: Optimal objective value is -12.000000.

Optimal solution found.
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Intlinprog stopped at the root node because the objective value is wit
options.TolGapAbs = 0 (the default value). The intcon variables are in
options.TolInteger = 1e-05 (the default value).

x =

0
5.5000
1.0000

Solve an MILP with Nondefault Options

Solve the problem

min
,

x
x x x

x
x x
x x x

x

   
 




3 2

4

0
71 2 3

3

1 2

1 2 3

1

 subject to 

 binary

 









 2 122 3x x

without showing iterative display.

Specify the solver inputs.

f = [-3;-2;-1];
intcon = 3;
A = [1,1,1];
b = 7;
Aeq = [4,2,1];
beq = 12;
lb = zeros(3,1);
ub = [Inf;Inf;1]; % enforces x(3) is binary

Specify no display.

options = optimoptions('intlinprog','Display','off');

Run the solver.
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x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options)

x =

0
5.5000
1.0000

Use a Problem Structure

Solve the problem

min
,

x
x x x

x
x x
x x x

x

   
 




3 2

4

0
71 2 3

3

1 2

1 2 3

1

 subject to 

 binary

 









 2 122 3x x

using iterative display. Use a problem structure as the intlinprog
input.

Specify the solver inputs.

f = [-3;-2;-1];
intcon = 3;
A = [1,1,1];
b = 7;
Aeq = [4,2,1];
beq = 12;
lb = zeros(3,1);
ub = [Inf;Inf;1]; % enforces x(3) is binary
options = optimoptions('intlinprog','Display','off');

Insert the inputs into a problem structure. Include the solver name.

problem = struct('f',f,'intcon',intcon,...
'Aineq',A,'bineq',b,'Aeq',Aeq,'beq',beq,...
'lb',lb,'ub',ub,'options',options,...
'solver','intlinprog');
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Run the solver.

x = intlinprog(problem)

x =

0
5.5000
1.0000

Examine the MILP Solution and Process

Call intlinprog with more outputs to see solution details and process.

The goal is to solve the problem

min
,

x
x x x

x
x x
x x x

x

   
 




3 2

4

0
71 2 3

3

1 2

1 2 3

1

 subject to 

 binary

 









 2 122 3x x

Specify the solver inputs.

f = [-3;-2;-1];
intcon = 3;
A = [1,1,1];
b = 7;
Aeq = [4,2,1];
beq = 12;
lb = zeros(3,1);
ub = [Inf;Inf;1]; % enforces x(3) is binary

Call intlinprog with all outputs.

[x,fval,exitflag,output] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

LP: Optimal objective value is -12.000000.
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Optimal solution found.

Intlinprog stopped at the root node because the objective value is within
options.TolGapAbs = 0 (the default value). The intcon variables are integ
options.TolInteger = 1e-05 (the default value).

x =

0
5.5000
1.0000

fval =

-12.0000

exitflag =

1

output =

relativegap: 0
absolutegap: 0

numfeaspoints: 1
numnodes: 0

constrviolation: 1.7764e-15
message: 'Optimal solution found.

Intlinprog stopped at the root node because the objective v...'
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The output structure shows numnodes is 0. This means intlinprog
solved the problem before branching. This is one indication that the
result is reliable. Also, the absolutegap and relativegap fields are 0.
This is another indication that the result is reliable.

Tips • To specify binary variables, set the variables to be integers in
intcon, and give them lower bounds of 0 and upper bounds of 1.

• Save memory by specifying sparse linear constraint matrices A and
Aeq. However, you cannot use sparse matrices for b and beq.

• To provide logical indices for integer components, meaning a binary
vector with 1 indicating an integer, convert to intcon form using
find. For example,

logicalindices = [1,0,0,1,1,0,0];
intcon = find(logicalindices)

intcon =

1 4 5

Limitations • Often, some supposedly integer-valued components of the solution
x(intCon) are not precisely integers. intlinprog deems as integers
all solution values within the TolInteger tolerance of an integer.

To round all supposed integers to be exactly integers, use the round
function.

x(intcon) = round(x(intcon));
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Caution

Rounding solutions can cause the solution to become infeasible.
Check feasibility after rounding:

max(A*x - b) % See if entries are not too positive, so have small infea
max(abs(Aeq*x - beq)) % See if entries are near enough to zero
max(x - ub) % Positive entries are violated bounds
max(lb - x) % Positive entries are violated bounds

• intlinprog does not enforce that solution components be
integer-valued when their absolute values exceed 2.1e9. When
your solution has such components, intlinprog warns you. If you
receive this warning, check the solution to see whether supposedly
integer-valued components of the solution are close to integers.

• intlinprog does not allow components of the problem, such as
coefficients in f, A, or ub, to exceed 1e25 in absolute value. If you try
to run intlinprog with such a problem, intlinprog issues an error.

• Currently, you cannot run intlinprog in the Optimization app.

Definitions MILP

Mixed-integer linear programming definition.

MILP means find the minimum of a problem specified by

min

( )

x

Tf x

x
A x
Aeq x beq
lb

b
 subject to 

intcon  are integers

 


 xx ub









 .

f, x, intcon, b, beq, lb, and ub are vectors, and A and Aeq are matrices.
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You can specify f, intcon, lb, and ub as vectors or arrays. See “Matrix
Arguments” on page 2-32.

See Also linprog | optimoptions

Related
Examples

• “Mixed-Integer Linear Programming Basics” on page 6-169
• “Factory, Warehouse, Sales Allocation Model” on page 6-173
• “Travelling Salesman Problem” on page 6-185
• “Solve Sudoku Puzzles Via Integer Programming” on page 6-192

Concepts • “Mixed-Integer Linear Programming Algorithms” on page 6-157
• “Tuning Integer Linear Programming” on page 6-166
• “Optimization Problem Setup”
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Purpose Find minimum of constrained or unconstrained nonlinear multivariable
function using KNITRO third-party libraries

Equation Finds the minimum of a problem specified by

min ( )

( )
( )

,

x
f x

c x
ceq x

A x b
Aeq x beq

lb x ub

 such that 

≤
=

⋅ ≤
⋅ =
≤ ≤

⎧

⎨

⎪
0
0⎪⎪⎪

⎩

⎪
⎪
⎪

where b and beq are vectors, A and Aeq are matrices, c(x) and ceq(x)
are functions that return vectors, and f(x) is a function that returns a
scalar. f(x), c(x), and ceq(x) can be nonlinear functions. All constraints
are optional; ktrlink can minimize unconstrained problems.

x, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

Note To use ktrlink, you must have KNITRO third-party libraries,
and have a path that includes these libraries. See “ktrlink: An Interface
to KNITRO Libraries” on page 8-2.

Syntax x = ktrlink(fun,x0)
x = ktrlink(fun,x0,A,b)
x = ktrlink(fun,x0,A,b,Aeq,beq)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,
knitroOptions)
[x,fval] = ktrlink(...)
[x,fval,exitflag] = ktrlink(...)
[x,fval,exitflag,output] = ktrlink(...)
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[x,fval,exitflag,output,lambda] = ktrlink(...)

Description ktrlink attempts to find a minimum of a scalar function of several
variables starting at an initial estimate. This is generally referred to
as constrained or unconstrained nonlinear optimization, or nonlinear
programming.

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the objective function and nonlinear constraint
functions, if necessary.

x = ktrlink(fun,x0) starts at x0 and attempts to find a minimizer x
of the function described in fun, subject to no constraints. x0 can be a
scalar, vector, or matrix.

x = ktrlink(fun,x0,A,b) minimizes fun subject to the linear
inequalities A*x b.

x = ktrlink(fun,x0,A,b,Aeq,beq) minimizes fun subject to the
linear equalities Aeq*x = beq as well as A*x b. If no inequalities
exist, set A = [] and b = [].

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub) defines a set of lower and
upper bounds on the design variables in x, so that the solution is always
in the range lb x ub. If no equalities exist, set Aeq = [] and
beq = []. If x(i) is unbounded below, set lb(i) = -Inf, and if x(i) is
unbounded above, set ub(i) = Inf.

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) subjects the
minimization to the nonlinear inequalities c(x) and the equalities
ceq(x) defined in nonlcon. fmincon optimizes such that c(x) 0 and
ceq(x) = 0. If no bounds exist, set lb = [] and/or ub = [].

x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
minimizes with the optimization options specified in options. Use
optimoptions to set these options. If there are no nonlinear inequality
or equality constraints, set nonlcon = [].
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x = ktrlink(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,
knitroOptions) minimizes with the KNITRO options specified in the
text file knitroOptions. All options given in options are ignored
except for HessFcn, HessMult, HessPattern, and JacobPattern.

[x,fval] = ktrlink(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = ktrlink(...) returns exitflag, which
describes the exit condition of the KNITRO solver.

[x,fval,exitflag,output] = ktrlink(...) returns a structure
output with information about the optimization.

[x,fval,exitflag,output,lambda] = ktrlink(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Components of x0 that violate the bounds lb x ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains descriptions of
arguments passed to ktrlink. “Options” on page 10-52 provides the
function-specific details for the options values. This section provides
function-specific details for fun and nonlcon.
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fun The function to be minimized. fun is a function that accepts a vector x and
returns a scalar f, the objective function evaluated at x. fun can be specified
as a function handle for a function file:

x = ktrlink(@myfun,x0,A,b)

where myfun is a MATLAB function such as

function f = myfun(x)
f = ... % Compute function value at x

fun can also be a function handle for an anonymous function.

x = ktrlink(@(x)norm(x)^2,x0,A,b);

If you can compute the gradient of fun and the GradObj option is 'on', as
set by

options = optimoptions('ktrlink','GradObj','on')

then fun must return the gradient vector g(x) in the second output
argument.

If you can compute the Hessian matrix, there are several ways to pass the
Hessian to ktrlink. See “Hessian” on page 10-183 for details.

nonlcon The function that computes the nonlinear inequality constraints c(x) 0 and
the nonlinear equality constraints ceq(x) = 0. nonlcon accepts a vector x
and returns the two vectors c and ceq. c contains the nonlinear inequalities
evaluated at x, and ceq contains the nonlinear equalities evaluated at x. The
function nonlcon can be specified as a function handle.

x = ktrlink(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon)

where mycon is a MATLAB function such as

function [c,ceq] = mycon(x)
c = ... % Compute nonlinear inequalities at x.
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ceq = ... % Compute nonlinear equalities at x.

If you can compute the gradients of the constraints and the GradConstr
option is 'on', as set by

options = optimoptions('ktrlink','GradConstr','on')

then nonlcon must also return GC, the gradient of c(x), and GCeq, the
gradient of ceq(x), in the third and fourth output arguments respectively.
See “Nonlinear Constraints” on page 2-37 for details.

Note Because Optimization Toolbox functions only accept inputs of type
double, user-supplied objective and nonlinear constraint functions must
return outputs of type double.

“Passing Extra Parameters” on page 2-53 explains how to parameterize the
nonlinear constraint function nonlcon, if necessary.

Output
Arguments

“Function Arguments” on page 9-2 contains descriptions of arguments
returned by ktrlink. This section provides function-specific details for
exitflag, lambda, and output:

exitflag Integer identifying the reason the algorithm
terminated. For more information, see the KNITRO
documentation at http://www.ziena.com/

Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

lambda
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eqlin Linear equalities

ineqnonlin Nonlinear inequalities
eqnonlin Nonlinear equalities

Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations taken

funcCount Number of function evaluations

constrviolation Maximum of constraint
violations (interior-point
algorithm only)

output

firstorderopt Measure of first-order optimality

Hessian

ktrlink can optionally use a user-supplied Hessian, the matrix of
second derivatives of the Lagrangian, namely,

∇ ∇ ∇ ∇xx i i i iL x f x c x ceq x2 2 2 2( , ) ( ) ( ) ( ).  = + +∑ ∑ (10-2)

If you don’t supply a Hessian, KNITRO software estimates it.

To provide a Hessian, the syntax is

hessian = hessianfcn(x, lambda)

hessian is an n-by-n matrix, sparse or dense, where n is the number of
variables. lambda is a structure with the Lagrange multiplier vectors
associated with the nonlinear constraints:

lambda.ineqnonlin
lambda.eqnonlin

KNITRO software computes lambda. hessianfcn must calculate the
sums in Equation 10-2. Indicate that you are supplying a Hessian by
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options = optimoptions('ktrlink','Hessian','user-supplied',...
'HessFcn',@hessianfcn);

There are several more options for Hessians:

• options = optimoptions('ktrlink','Hessian','bfgs');

The KNITRO solver calculates the Hessian by a dense quasi-Newton
approximation.

• options = optimoptions('ktrlink','Hessian',...
{'lbfgs',positive integer});

The KNITRO solver calculates the Hessian by a limited-memory,
large-scale quasi-Newton approximation. The positive integer
specifies how many past iterations should be remembered.

• options =
optimoptions('ktrlink','Hessian','fin-diff-grads',...
'SubproblemAlgorithm','cg','GradObj','on',...
'GradConstr','on');

The KNITRO solver calculates a Hessian-times-vector product by
finite differences of the gradient(s). You must supply the gradient of
the objective function, and also gradients of any nonlinear constraint
functions.

• options =
optimoptions('ktrlink','Hessian','user-supplied',...
'SubproblemAlgorithm','cg','HessMult',@HessMultFcn);

The KNITRO solver uses a Hessian-times-vector product. You must
supply the function HessMultFcn, which returns an n-by-1 vector.
The HessMult option enables you to pass the result of multiplying
the Hessian by a vector without calculating the Hessian.

The syntax for the 'HessMult' option is:

w = HessMultFcn(x,lambda,v);
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The result w should be the product H*v, where H is the Hessian at x,
lambda is the Lagrange multiplier (computed by KNITRO software),
and v is a vector.

Options Optimization options used by ktrlink. Use optimoptions to set or
change options. See “Optimization Options Reference” on page 9-7 for
detailed information. For example:

options = optimoptions('ktrlink','Algorithm','active-set');

Option Description

Algorithm Choose a KNITRO optimization algorithm:
'interior-point' or 'active-set'.
Default: 'interior-point'.

AlwaysHonorConstraints The default 'bounds' ensures that bound
constraints are satisfied at every iteration.
Disable by setting to 'none'.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each
iteration, and gives the default exit
message.

• 'iter-detailed' displays output at
each iteration, and gives the technical
exit message.

• 'notify' displays output only if the
function does not converge, and gives
the default exit message.

• 'notify-detailed' displays output
only if the function does not converge,
and gives the technical exit message.
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Option Description

• 'final' (default) displays just the
final output, and gives the default exit
message.

• 'final-detailed' displays just the
final output, and gives the technical
exit message.

FinDiffType Finite differences, used to estimate
gradients, are either 'forward' (the
default), or 'central' (centered).
'central' takes twice as many function
evaluations but should be more accurate.
'central' differences might violate
bounds during their evaluation.

FunValCheck Check whether objective function values
are valid.

• 'on' displays an error when the
objective function returns a value that
is complex, Inf, or NaN.

• The default, 'off', displays no error.

GradConstr Gradient for nonlinear constraint
functions defined by the user. When set
to 'on', ktrlink expects the constraint
function to have four outputs, as described
in nonlcon in the “Input Arguments”
on page 10-180 section. When set to
the default, 'off', gradients of the
nonlinear constraints are estimated by
finite differences.

If you want to use sparse constraint
gradients, you must set the sparsity
pattern with JacobPattern, as described
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Option Description
in “Sparsity Pattern for Nonlinear
Constraints” on page 8-10.

Caution JacobPattern has transposed
orientation compared to the constraint
gradients.

GradObj Gradient for the objective function defined
by the user. See the preceding description
of fun to see how to define the gradient
in fun. Set to 'on' to have KNITRO use
a user-defined gradient of the objective
function. The default 'off' causes
KNITRO to estimate gradients using
finite differences.

HessFcn Function handle to a user-supplied
Hessian (see “Hessian” on page 10-183).
Default: [].

Hessian Chooses how ktrlink calculates the
Hessian (see “Hessian” on page 10-183).
Default: 'bfgs'.

HessMult Handle to a user-supplied function that
gives a Hessian-times-vector product (see
“Hessian” on page 10-183). Default: [].

HessPattern Sparsity pattern of objective
function Hessian (see “Hessian”
on page 10-183). Default:
'sparse(ones(numberOfVariables))'.

InitBarrierParam Initial barrier value. A value above the
default 0.1 might help, especially if the
objective or constraint functions are large.
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Option Description

InitTrustRegionRadius Initial radius of the trust region. On
badly-scaled problems choose a value

smaller than the default, n , where n is
the number of variables.

JacobPattern Sparsity pattern of the Jacobian of the
nonlinear constraint matrix for finite
differencing or for a gradient function in
nonlcon.

Even when you include the nonlinear
constraint gradient in nonlcon, if
you want ktrlink to use sparse
gradients, you must pass the sparsity
pattern via JacobPattern, as described
in “Sparsity Pattern for Nonlinear
Constraints” on page 8-10. Default:
'sparse(ones(Jrows,Jcols))'.

MaxIter Maximum number of iterations allowed.
Default: 10000.

MaxProjCGIter A tolerance (stopping criterion) for
the number of projected conjugate
gradient iterations; this is an
inner iteration, not the number of
iterations of the algorithm. Default:
'2*(numberOfVariables-numberOfEqualities)'.

ObjectiveLimit A tolerance (stopping criterion). If the
objective function value goes below
ObjectiveLimit and the iterate is
feasible, the iterations halt, since the
problem is presumably unbounded.
Default: -1e20.
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Option Description

ScaleProblem The default 'obj-and-constr' causes the
algorithm to normalize all constraints and
the objective function. Disable by setting
to 'none'.

SubproblemAlgorithm Determines how the iteration
step is calculated. The default
'ldl-factorization' is usually faster
than 'cg' (conjugate gradient), though
'cg' may be faster for large problems
with dense Hessians.

TolCon Termination tolerance on the constraint
violation. Default: 1e-6.

TolFun Termination tolerance on the function
value. Default: 1e-6.

TolX Termination tolerance on x. Default:
1e-15.

KNITRO®

Options
You can set options for the KNITRO libraries and pass them in a text
file. The text file should consist of lines of text with the name of an
option followed by blank space and then the desired value of the option.
For example, to select the maximum run time to be less than 100
seconds, and to use an adaptive algorithm for changing the multiplier μ,
create a text file containing the following lines:

ms_maxtime_real 100
bar_murule adaptive

For full details about the structure of the file and all possible options,
see the KNITRO documentation at http://www.ziena.com/.

References [1] http://www.ziena.com/

See Also fminbnd | fmincon | fminsearch | fminunc | optimoptions
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How To • function_handle

• “ktrlink: An Interface to KNITRO Libraries” on page 8-2
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Purpose Solve linear programming problems

Equation Finds the minimum of a problem specified by

min
,

,
.

x

Tf x
A x b

Aeq x beq
lb x ub

 such that 
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪

f, x, b, beq, lb, and ub are vectors, and A and Aeq are matrices.

Syntax x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
x = linprog(problem)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)

Description linprog solves linear programming problems.

x = linprog(f,A,b) solves min f'*x such that A*x b.

x = linprog(f,A,b,Aeq,beq) solves the problem above while
additionally satisfying the equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables, x, so that the solution is always in the
range lb x ub. Set Aeq = [] and beq = [] if no equalities exist.

x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.
linprog uses x0 only with the active-set algorithm. linprog ignores
x0 with the interior-point and simplex algorithms.
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x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with
the optimization options specified in options. Use optimoptions to
set these options.

x = linprog(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-192.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,fval] = linprog(...) returns the value of the objective function
fun at the solution x: fval = f'*x.

[x,fval,exitflag] = linprog(...) returns a value exitflag that
describes the exit condition.

[x,fval,exitflag,output] = linprog(...) returns a structure
output that contains information about the optimization.

[x,fval,exitflag,output,lambda] = linprog(...) returns a
structure lambda whose fields contain the Lagrange multipliers at the
solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into linprog. “Options” on page 10-194 provides the
function-specific details for the options values.
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f Linear objective function vector f

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

x0 Initial point for x, active set algorithm
only

solver 'linprog'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by linprog. This section provides function-specific
details for exitflag, lambda, and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of exitflag
and the corresponding reasons the algorithm
terminated.

1 Function converged to a solution x.

0 Number of iterations exceeded
options.MaxIter.

-2 No feasible point was found.

-3 Problem is unbounded.

-4 NaN value was encountered during
execution of the algorithm.

-5 Both primal and dual problems are
infeasible.

exitflag
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-7 Search direction became too small.
No further progress could be made.

Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

lambda

eqlin Linear equalities

Structure containing information about the
optimization. The fields of the structure are:

iterations Number of iterations

algorithm Optimization algorithm used

cgiterations 0 (interior-point algorithm
only, included for backward
compatibility)

message Exit message

constrviolationMaximum of constraint functions

output

firstorderopt First-order optimality measure

Options Optimization options used by linprog. Some options apply to all
algorithms, and others are only relevant when using the interior-point
algorithm. Use optimoptions to set or change options. See
“Optimization Options Reference” on page 9-7 for detailed information.

All Algorithms

All linprog algorithms use the following options:
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Algorithm Choose the optimization algorithm:

• 'interior-point' (default)

• 'active-set'

• 'simplex'

For information on choosing the algorithm, see
“Choosing the Algorithm” on page 2-7.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on' or
the default 'off'.

Display Level of display.

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration. The
'iter' option only works with the interior-point
and simplex algorithms.

• 'final' (default) displays just the final output.

LargeScale

Use Algorithm
instead

Use large-scale algorithm when set to 'on'
(default). Use a medium-scale algorithm when set
to 'off' (see Simplex in “simplex Algorithm Only”
on page 10-196). For information on choosing the
algorithm, see “Choosing the Algorithm” on page
2-7.
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MaxIter Maximum number of iterations allowed, a positive
integer. The default is:

• 85 for the interior-point algorithm

• 10*numberOfVariables for the simplex
algorithm

• 10*max(numberOfVariables,
numberOfInequalities + numberOfBounds)
for the active-set algorithm

TolFun Termination tolerance on the function value, a
positive scalar. The default is:

• 1e-8 for the interior-point algorithm

• 1e-6 for the simplex algorithm

• The option is not used for the medium-scale
active-set algorithm

simplex Algorithm Only

The simplex algorithm use the following option:

Simplex

Use Algorithm
instead

If 'on', and if LargeScale is 'off', linprog uses
the simplex algorithm. The simplex algorithm
uses a built-in starting point, ignoring the
starting point x0 if supplied. The default is 'off',
meaning linprog uses an active-set algorithm.
See “Active-Set and Simplex Algorithms” on page
10-198 for more information and an example.

Examples Find x that minimizes

f(x) = –5x1 – 4x2 –6x3,

subject to
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x1 – x2 + x3 ≤ 20
3x1 + 2x2 + 4x3 ≤ 42
3x1 + 2x2 ≤ 30
0 ≤ x1, 0 ≤ x2, 0 ≤ x3.

First, enter the coefficients

f = [-5; -4; -6];
A = [1 -1 1

3 2 4
3 2 0];

b = [20; 42; 30];
lb = zeros(3,1);

Next, call a linear programming routine.

[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);

Examine the solution and Lagrange multipliers:

x,lambda.ineqlin,lambda.lower

x =
0.0000

15.0000
3.0000

ans =
0.0000
1.5000
0.5000

ans =
1.0000
0.0000
0.0000
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Nonzero elements of the vectors in the fields of lambda indicate active
constraints at the solution. In this case, the second and third inequality
constraints (in lambda.ineqlin) and the first lower bound constraint
(in lambda.lower) are active constraints (i.e., the solution is on their
constraint boundaries).

Algorithms Interior-Point Algorithm

The interior-point method is based on LIPSOL (Linear Interior Point
Solver, [3]), which is a variant of Mehrotra’s predictor-corrector
algorithm ([2]), a primal-dual interior-point method. A number of
preprocessing steps occur before the algorithm begins to iterate. See
“Interior-Point Linear Programming” on page 6-106.

Active-Set and Simplex Algorithms

linprog uses a projection method as used in the quadprog algorithm.
linprog is an active set method and is thus a variation of the
well-known simplex method for linear programming [1]. The algorithm
finds an initial feasible solution by first solving another linear
programming problem.

Alternatively, you can use the simplex algorithm, described in “linprog
Simplex Algorithm” on page 6-114, by entering

options = optimoptions('linprog','Algorithm','simplex')

and passing options as an input argument to linprog. The simplex
algorithm returns a vertex optimal solution.

Note linprog ignores x0, and computes its own initial point for the
interior-point and simplex algorithms. linprog uses x0 only with
the active-set algorithm.

Diagnostics Interior-Point Algorithm

The first stage of the algorithm might involve some preprocessing of the
constraints (see “Interior-Point Linear Programming” on page 6-106).
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Several possible conditions might occur that cause linprog to exit with
an infeasibility message. In each case, the exitflag argument returned
by linprog is set to a negative value to indicate failure.

If a row of all zeros is detected in Aeq but the corresponding element of
beq is not zero, the exit message is

Exiting due to infeasibility: An all-zero row in the
constraint matrix does not have a zero in corresponding
right-hand-side entry.

If one of the elements of x is found not to be bounded below, the exit
message is

Exiting due to infeasibility: Objective f'*x is
unbounded below.

If one of the rows of Aeq has only one nonzero element, the associated
value in x is called a singleton variable. In this case, the value of
that component of x can be computed from Aeq and beq. If the value
computed violates another constraint, the exit message is

Exiting due to infeasibility: Singleton variables in
equality constraints are not feasible.

If the singleton variable can be solved for but the solution violates the
upper or lower bounds, the exit message is

Exiting due to infeasibility: Singleton variables in
the equality constraints are not within bounds.

Note The preprocessing steps are cumulative. For example, even if
your constraint matrix does not have a row of all zeros to begin with,
other preprocessing steps may cause such a row to occur.

Once the preprocessing has finished, the iterative part of the algorithm
begins until the stopping criteria are met. (See “Interior-Point Linear
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Programming” on page 6-106 for more information about residuals, the
primal problem, the dual problem, and the related stopping criteria.) If
the residuals are growing instead of getting smaller, or the residuals
are neither growing nor shrinking, one of the two following termination
messages is displayed, respectively,

One or more of the residuals, duality gap, or total relative error

has grown 100000 times greater than its minimum value so far:

or

One or more of the residuals, duality gap, or total relative error

has stalled:

After one of these messages is displayed, it is followed by one of the
following six messages indicating that the dual, the primal, or both
appear to be infeasible. The messages differ according to how the
infeasibility or unboundedness was measured.

The dual appears to be infeasible (and the primal unbounded).(The

primal residual < TolFun.)

The primal appears to be infeasible (and the dual unbounded). (The

dual residual < TolFun.)

The dual appears to be infeasible (and the primal unbounded) since

the dual residual > sqrt(TolFun).(The primal residual <

10*TolFun.)

The primal appears to be infeasible (and the dual unbounded) since

the primal residual > sqrt(TolFun).(The dual residual <

10*TolFun.)

The dual appears to be infeasible and the primal unbounded since

the primal objective < -1e+10 and the dual objective < 1e+6.

The primal appears to be infeasible and the dual unbounded since

the dual objective > 1e+10 and the primal objective > -1e+6.

Both the primal and the dual appear to be infeasible.

Note that, for example, the primal (objective) can be unbounded and the
primal residual, which is a measure of primal constraint satisfaction,
can be small.
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Active-Set and Simplex Algorithms

linprog gives a warning when the problem is infeasible.

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, linprog produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, linprog gives

Warning: The equality constraints are overly
stringent; there is no feasible solution.

Unbounded solutions result in the warning

Warning: The solution is unbounded and at infinity;
the constraints are not restrictive enough.

In this case, linprog returns a value of x that satisfies the constraints.

Limitations Active-Set Algorithm

At this time, the only levels of display, using the Display option in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

Interior-Point Algorithm

Coverage and Requirements

For Large Problems

A and Aeq should be sparse.

References [1] Dantzig, G.B., A. Orden, and P. Wolfe, “Generalized Simplex Method
for Minimizing a Linear Form Under Linear Inequality Restraints,”
Pacific Journal Math., Vol. 5, pp. 183–195, 1955.
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[2] Mehrotra, S., “On the Implementation of a Primal-Dual Interior
Point Method,” SIAM Journal on Optimization, Vol. 2, pp. 575–601,
1992.

[3] Zhang, Y., “Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment,” Technical Report TR96-01,
Department of Mathematics and Statistics, University of Maryland,
Baltimore County, Baltimore, MD, July 1995.

See Also intlinprog | quadprog | optimtool

How To • “Linear Programming and Mixed-Integer Linear Programming”
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Purpose Solve nonlinear curve-fitting (data-fitting) problems in least-squares
sense

Equation Find coefficients x that solve the problem

min ( , ) min , ,
x x

i i
i

F x xdata ydata F x xdata ydata− = ( ) −( )∑2
2 2

given input data xdata, and the observed output ydata, where xdata
and ydata are matrices or vectors, and F (x, xdata) is a matrix-valued or
vector-valued function of the same size as ydata.

Optionally, the components of x can have lower and upper bounds lb,
and ub. x, lb, and ub can be vectors or matrices; see “Matrix Arguments”
on page 2-32.

The lsqcurvefit function uses the same algorithm as lsqnonlin.
lsqcurvefit simply provides a convenient interface for data-fitting
problems.

Syntax x = lsqcurvefit(fun,x0,xdata,ydata)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options)
x = lsqcurvefit(problem)
[x,resnorm] = lsqcurvefit(...)
[x,resnorm,residual] = lsqcurvefit(...)
[x,resnorm,residual,exitflag] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqcurvefit(...)
[x,resnorm,residual,exitflag,output,lambda,

jacobian] = lsqcurvefit(...)

Description x = lsqcurvefit(fun,x0,xdata,ydata) starts at x0 and finds
coefficients x to best fit the nonlinear function fun(x,xdata) to the
data ydata (in the least-squares sense). ydata must be the same size as
the vector (or matrix) F returned by fun.
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Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to fun, if necessary.

fun should return fun(x,xdata), and not the sum-of-squares
sum((fun(x,xdata)-ydata).^2). lsqcurvefit implicitly computes
the sum of squares of the components of fun(x,xdata)-ydata.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub) defines a set of lower
and upper bounds on the design variables in x so that the solution is
always in the range lb ≤ x ≤ ub.

x = lsqcurvefit(fun,x0,xdata,ydata,lb,ub,options) minimizes
with the optimization options specified in options. Use optimoptions
to set these options. Pass empty matrices for lb and ub if no bounds
exist.

x = lsqcurvefit(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-205.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,resnorm] = lsqcurvefit(...) returns the value of the squared
2-norm of the residual at x: sum((fun(x,xdata)-ydata).^2).

[x,resnorm,residual] = lsqcurvefit(...) returns the value of the
residual fun(x,xdata)-ydata at the solution x.

[x,resnorm,residual,exitflag] = lsqcurvefit(...) returns a
value exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqcurvefit(...)
returns a structure output that contains information about the
optimization.

[x,resnorm,residual,exitflag,output,lambda] =
lsqcurvefit(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.
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[x,resnorm,residual,exitflag,output,lambda, jacobian] =
lsqcurvefit(...) returns the Jacobian of fun at the solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb x ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqcurvefit. This section provides
function-specific details for fun, options, and problem:

fun The function you want to fit. fun is a function that takes
two inputs: a vector or matrix x, and a vector or matrix
xdata. fun returns a vector or matrix F, the objective
function evaluated at x and xdata. The function fun can
be specified as a function handle for a function file:

x = lsqcurvefit(@myfun,x0,xdata,ydata)

where myfun is a MATLAB function such as

function F = myfun(x,xdata)
F = ... % Compute function values at x, xdata

fun can also be a function handle for an anonymous
function.

f = @(x,xdata)x(1)*xdata.^2+x(2)*sin(xdata);
x = lsqcurvefit(f,x0,xdata,ydata);

lsqcurvefit internally converts matrix x or F to vectors
using linear indexing.
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Note fun should return fun(x,xdata), and not the
sum-of-squares sum((fun(x,xdata)-ydata).^2).
lsqcurvefit implicitly computes the sum of squares of
the components of fun(x,xdata)-ydata.

If the Jacobian can also be computed and the Jacobian
option is 'on', set by

options = optimoptions('lsqcurvefit','Jacobian','on')

then the function fun must return, in a second output
argument, the Jacobian value J, a matrix, at x. By
checking the value of nargout, the function can avoid
computing J when fun is called with only one output
argument (in the case where the optimization algorithm
only needs the value of F but not J).

function [F,J] = myfun(x,xdata)

F = ... % objective function values at x

if nargout > 1 % two output arguments

J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and
x has length n, where n is the length of x0, then the
Jacobian J is an m-by-n matrix where J(i,j) is the
partial derivative of F(i) with respect to x(j). (The
Jacobian J is the transpose of the gradient of F.) For more
information, see “Writing Vector and Matrix Objective
Functions” on page 2-27.

options “Options” on page 10-209 provides the function-specific
details for the options values.
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objective Objective function of x and xdata

x0 Initial point for x, active set algorithm only

xdata Input data for objective function

ydata Output data to be matched by objective
function

lb Vector of lower bounds

ub Vector of upper bounds

solver 'lsqcurvefit'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqcurvefit. This section provides
function-specific details for exitflag, lambda, and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of exitflag
and the corresponding reasons the algorithm
terminated:

1 Function converged to a solution x.

2 Change in x was less than the
specified tolerance.

3 Change in the residual was less
than the specified tolerance.

4 Magnitude of search direction
smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

exitflag
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-1 Output function terminated the
algorithm.

-2 Problem is infeasible: the bounds
lb and ub are inconsistent.

-4 Optimization could not make
further progress.

Structure containing the Lagrange multipliers at the
solution x (separated by constraint type). The fields
of the structure are

lower Lower bounds lb

lambda

upper Upper bounds ub

Structure containing information about the
optimization. The fields of the structure are

firstorderopt Measure of first-order optimality
(trust-region-reflective algorithm,
[ ] for others).

iterations Number of iterations taken

funcCount Number of function evaluations

cgiterations Total number of PCG iterations
(trust-region-reflective algorithm,
[ ] for others)

algorithm Optimization algorithm used

stepsize Final displacement in x
(Levenberg-Marquardt algorithm).

output

message Exit message
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Note The sum of squares should not be formed explicitly. Instead, your
function should return a vector of function values. See the examples
below.

Options Optimization options used by lsqcurvefit. Some options
apply to all algorithms, some are only relevant when using the
trust-region-reflective algorithm, and others are only relevant when you
are using the Levenberg-Marquardt algorithm. Use optimoptions to
set or change options. See “Algorithm Options” on page 10-209 for
detailed information.

The Algorithm option specifies a preference for which algorithm to use.
It is only a preference, because certain conditions must be met to use
the trust-region-reflective or Levenberg-Marquardt algorithm. For the
trust-region-reflective algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of equations (the
number of elements of F returned by fun) must be at least as many as
the length of x. Furthermore, only the trust-region-reflective algorithm
handles bound constraints.

Algorithm Options

Both algorithms use the following option:

Algorithm Choose between 'trust-region-reflective'
(default) and 'levenberg-marquardt'. Set
the initial Levenberg-Marquardt parameter λ
by setting Algorithm to a cell array such as
{'levenberg-marquardt',.005}. The default
λ = 0.01.

The Algorithm option specifies a preference for
which algorithm to use. It is only a preference,
because certain conditions must be met to use
each algorithm. For the trust-region-reflective
algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of
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equations (the number of elements of F returned
by fun) must be at least as many as the length of
x. The Levenberg-Marquardt algorithm does not
handle bound constraints. For more information
on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients
of objective or constraints) to finite-differencing
derivatives. The choices are 'on' or the default
'off'.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on' or
the default 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.

DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration, and
gives the default exit message.

• 'iter-detailed' displays output at each
iteration, and gives the technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.
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FinDiffRelStep Scalar or vector step size factor. When you set
FinDiffRelStep to a vector v, forward finite
differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (default), or 'central'
(centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.

FunValCheck Check whether function values are valid. 'on'
displays an error when the function returns a
value that is complex, Inf, or NaN. The default
'off' displays no error.

Jacobian If 'on', lsqcurvefit uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function. If
'off' (default), lsqcurvefit approximates the
Jacobian using finite differences.
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MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed, a positive
integer. The default is 400.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]):

• @optimplotx plots the current point.

• @optimplotfunccount plots the function count.

• @optimplotfval plots the function value.

• @optimplotresnorm plots the norm of the
residuals.

• @optimplotstepsize plots the step size.

• @optimplotfirstorderopt plots the first-order
optimality measure.

For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6.
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TolX Termination tolerance on x, a positive scalar. The
default is 1e-6.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value is
ones(numberofvariables,1). lsqcurvefit uses
TypicalX for scaling finite differences for gradient
estimation.

Trust-Region-Reflective Algorithm Only

The trust-region-reflective algorithm uses the following options:

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
computes the Jacobian matrix product J*Y, J'*Y,
or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfo must be the same as the second argument
returned by the objective function fun, for
example, in

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:

• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.
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In each case, J is not formed explicitly.
lsqcurvefit uses Jinfo to compute the
preconditioner. See “Passing Extra Parameters”
on page 2-53 for information on how to supply
values for any additional parameters jmfun
needs.

Note 'Jacobian' must be set to 'on' for
lsqcurvefit to pass Jinfo from fun to jmfun.

See “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-80 and
“Jacobian Multiply Function with Linear Least
Squares” on page 6-224 for similar examples.

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. Set JacobPattern(i,j) = 1
when fun(i) depends on x(j). Otherwise,
set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have
∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to
compute the Jacobian matrix J in fun, though
you can determine (say, by inspection) when
fun(i) depends on x(j). lsqcurvefit can
approximate J via sparse finite differences when
you give JacobPattern.

In the worst case, if the structure is unknown, do
not set JacobPattern. The default behavior is as
if JacobPattern is a dense matrix of ones. Then
lsqcurvefit computes a full finite-difference
approximation in each iteration. This can be
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very expensive for large problems, so it is usually
better to determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Algorithms” on page
10-217.

PrecondBandWidth Upper bandwidth of preconditioner for
PCG, a nonnegative integer. The default
PrecondBandWidth is Inf, which means a direct
factorization (Cholesky) is used rather than the
conjugate gradients (CG). The direct factorization
is computationally more expensive than CG,
but produces a better quality step towards the
solution. Set PrecondBandWidth to 0 for diagonal
preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces
the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

Levenberg-Marquardt Algorithm Only

The Levenberg-Marquardt algorithm uses the following options:

ScaleProblem 'Jacobian' can sometimes improve the
convergence of a poorly-scaled problem; the
default is 'none'.

Examples Given vectors of data xdata and ydata, suppose you want to find
coefficients x to find the best fit to the exponential decay equation

ydata i x ex xdata i( ) ( ) ( ) ( ) = 1 2

10-215



lsqcurvefit

That is, you want to minimize

min , ,
x

i i
i

F x xdata ydata( ) −( )∑ 2

where m is the length of xdata and ydata, the function F is defined by

F(x,xdata) = x(1)*exp(x(2)*xdata);

and the starting point is x0 = [100; -1];.

First, write a file to return the value of F (F has n components).

function F = myfun(x,xdata)
F = x(1)*exp(x(2)*xdata);

Next, invoke an optimization routine:

% Assume you determined xdata and ydata experimentally
xdata = ...
[0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];

ydata = ...
[455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];

x0 = [100; -1] % Starting guess
[x,resnorm] = lsqcurvefit(@myfun,x0,xdata,ydata);

At the time that lsqcurvefit is called, xdata and ydata are assumed
to exist and are vectors of the same size. They must be the same size
because the value F returned by fun must be the same size as ydata.

After 27 function evaluations, this example gives the solution

x,resnorm

x =
498.8309 -0.1013

resnorm =
9.5049
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There may be a slight variation in the number of iterations and the
value of the returned x, depending on the platform and release.

Algorithms Trust-Region-Reflective Optimization

By default lsqcurvefit chooses the trust-region-reflective algorithm.
This algorithm is a subspace trust-region method and is based on
the interior-reflective Newton method described in [1] and [2]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG).
See “Trust-Region-Reflective Least Squares” on page 6-201, and in
particular, “Large Scale Nonlinear Least Squares” on page 6-203.

Levenberg-Marquardt Optimization

If you set the Algorithm option to 'levenberg-marquardt' with
optimoptions, lsqcurvefit uses the Levenberg-Marquardt method
[4], [5], and [6]. See “Levenberg-Marquardt Method” on page 6-205.

Diagnostics Trust-Region-Reflective Optimization

The trust-region-reflective method does not allow equal upper and lower
bounds. For example, if lb(2)==ub(2), lsqcurvefit gives the error

Equal upper and lower bounds not permitted.

lsqcurvefit does not handle equality constraints, which is another
way to formulate equal bounds. If equality constraints are present, use
fmincon, fminimax, or fgoalattain for alternative formulations where
equality constraints can be included.

Limitations The function to be minimized must be continuous. lsqcurvefit might
only give local solutions.

lsqcurvefit can solve complex-valued problems directly with the
levenberg-marquardt algorithm. However, this algorithm does
not accept bound constraints. For a complex problem with bound
constraints, split the variables into real and imaginary parts, and
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use the trust-region-reflective algorithm. See “Fit a Model to
Complex-Valued Data” on page 6-231.

Note The Statistics Toolbox function nlinfit has more
statistics-oriented outputs that are useful, for example, in finding
confidence intervals for the coefficients. It also comes with the nlintool
GUI for visualizing the fitted function.

The lsqnonlin function has more outputs related to how well the
optimization performed. It can put bounds on the parameters, and it
accepts many options to control the optimization algorithm.

Trust-Region-Reflective Optimization

The trust-region-reflective algorithm for lsqcurvefit does not solve
underdetermined systems; it requires that the number of equations, i.e.,
the row dimension of F, be at least as great as the number of variables.
In the underdetermined case, the Levenberg-Marquardt algorithm is
used instead.

The preconditioner computation used in the preconditioned conjugate
gradient part of the trust-region-reflective method forms JTJ (where J
is the Jacobian matrix) before computing the preconditioner; therefore,
a row of J with many nonzeros, which results in a nearly dense product
JTJ, can lead to a costly solution process for large problems.

If components of x have no upper (or lower) bounds, then lsqcurvefit
prefers that the corresponding components of ub (or lb) be set to inf
(or -inf for lower bounds) as opposed to an arbitrary but very large
positive (or negative for lower bounds) number.
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Trust-Region-Reflective Problem Coverage and Requirements

For Large Problems

• Provide sparsity structure of the Jacobian or compute the Jacobian
in fun.

• The Jacobian should be sparse.

Levenberg-Marquardt Optimization

The Levenberg-Marquardt algorithm does not handle bound constraints.

Since the trust-region-reflective algorithm does not handle
underdetermined systems and the Levenberg-Marquardt does not
handle bound constraints, problems with both these characteristics
cannot be solved by lsqcurvefit.

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418-445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
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See Also \ | lsqlin | lsqnonlin | lsqnonneg | optimoptions | optimtool
| nlinfit

How To • function_handle

• “Least-Squares (Model Fitting) Algorithms” on page 6-200

• “Nonlinear Curve Fitting with lsqcurvefit” on page 6-229
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Purpose Solve constrained linear least-squares problems

Equation Solves least-squares curve fitting problems of the form

min
,

,
.

x
C x d

A x b
Aeq x beq
lb x ub

1
2 2

2⋅ −
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩
⎪

 such that 

Syntax x = lsqlin(C,d,A,b)
x = lsqlin(C,d,A,b,Aeq,beq)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0)
x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options)
x = lsqlin(problem)
[x,resnorm] = lsqlin(...)
[x,resnorm,residual] = lsqlin(...)
[x,resnorm,residual,exitflag] = lsqlin(...)
[x,resnorm,residual,exitflag,output] = lsqlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)

Description x = lsqlin(C,d,A,b) solves the linear system C*x = d in the
least-squares sense subject to A*x b, where C is m-by-n.

x = lsqlin(C,d,A,b,Aeq,beq) solves the preceding problem while
additionally satisfying the equality constraints Aeq*x = beq. Set
A = [] and b = [] if no inequalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub) defines a set of lower and upper
bounds on the design variables in x so that the solution is always in the
range lb ≤ x ≤ ub. Set Aeq = [] and beq = [] if no equalities exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0.
Set lb = [] and ub = [] if no bounds exist.

x = lsqlin(C,d,A,b,Aeq,beq,lb,ub,x0,options) minimizes with
the optimization options specified in options. Use optimoptions to
set these options.
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x = lsqlin(problem) finds the minimum for problem, where problem
is a structure described in “Input Arguments” on page 10-223.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,resnorm] = lsqlin(...) returns the value of the squared 2-norm
of the residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqlin(...) returns the residual C*x-d.

[x,resnorm,residual,exitflag] = lsqlin(...) returns a value
exitflag that describes the exit condition.

[x,resnorm,residual,exitflag,output] = lsqlin(...) returns a
structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] = lsqlin(...)
returns a structure lambda whose fields contain the Lagrange
multipliers at the solution x.
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Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb x ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

If no x0 is provided, x0 is set to the zero vector. If any component of this
zero vector x0 violates the bounds, x0 is set to a point in the interior
of the box defined by the bounds.

The factor ½ in the definition of the problem affects the values in the
lambda structure.

You can solve some large structured problems, including those where the
C matrix is too large to fit in memory, using the trust-region-reflective
algorithm with a Jacobian multiply function. For information, see
“Trust-Region-Reflective Algorithm Only” on page 10-226.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments passed into lsqlin. “Options” on page 10-225 provides the
options values specific to lsqlin.

C Matrix

d Vector

Aineq Matrix for linear inequality constraints

bineq Vector for linear inequality constraints

Aeq Matrix for linear equality constraints

beq Vector for linear equality constraints

lb Vector of lower bounds

ub Vector of upper bounds

problem
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x0 Initial point for x

solver 'lsqlin'

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions of
arguments returned by lsqlin. This section provides function-specific
details for exitflag, lambda, and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution
x.

3 Change in the residual was
smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter.

-2 The problem is infeasible.

-4 Ill-conditioning prevents further
optimization.

exitflag

-7 Magnitude of search direction
became too small. No further
progress could be made.
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Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields are

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

lambda

eqlin Linear equalities

Structure containing information about the
optimization. The fields are

iterations Number of iterations taken

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region-reflective
algorithm, [ ] for active-set)

firstorderopt Measure of first-order optimality
(trust-region-reflective
algorithm, [ ] for active-set)

output

message Exit message

Options Optimization options used by lsqlin. Set or change the values of
these options using the optimoptions function. Some options apply
to all algorithms, some are only relevant when you are using the
trust-region-reflective algorithm. See “Optimization Options
Reference” on page 9-7 for detailed information.

All Algorithms

All algorithms use the following options:
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Algorithm

If you use
optimset (not
recommended),
use
LargeScale
instead of
Algorithm.

Choose the lsqlin algorithm. Choices are
'active-set' and 'trust-region-reflective'
(default).

The trust-region-reflective algorithm requires
only upper and lower bounds, meaning no linear
inequalities or equalities. Otherwise, lsqlin uses
the active-set algorithm. For more information
on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on' or
the default 'off'.

Display Level of display. 'off' or 'none' displays no
output; 'final' (default) displays just the final
output.

LargeScale

If you use
optimoptions
(recommended),
use Algorithm
instead of
LargeScale.

Use the large-scale algorithm if possible when set
to 'on' (default). Use the medium-scale algorithm
when set to 'off'.

The large-scale algorithm requires only upper
and lower bounds, meaning no linear inequalities
or equalities. Otherwise, lsqlin uses the
medium-scale algorithm. For more information
on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

MaxIter Maximum number of iterations allowed, a positive
integer. The default value is 200.

Trust-Region-Reflective Algorithm Only

The trust-region-reflective algorithm uses the following options:
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JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
should compute the Jacobian matrix product C*Y,
C'*Y, or C'*(C*Y) without actually forming C.
Write the function in the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains a matrix used to compute
C*Y (or C'*Y, or C'*(C*Y)).

jmfun must compute one of three different
products, depending on the value of flag that
lsqlin passes:

• If flag == 0 then W = C'*(C*Y).

• If flag > 0 then W = C*Y.

• If flag < 0 then W = C'*Y.

In each case, jmfun need not form C explicitly.
lsqlin uses Jinfo to compute the preconditioner.
See “Passing Extra Parameters” on page 2-53 for
information on how to supply extra parameters if
necessary.

See “Jacobian Multiply Function with Linear
Least Squares” on page 6-224 for an example.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Algorithms” on page
10-231.
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PrecondBandWidth Upper bandwidth of preconditioner for PCG.
By default, diagonal preconditioning is used
(upper bandwidth of 0). For some problems,
increasing the bandwidth reduces the number of
PCG iterations. Setting PrecondBandWidth to
Inf uses a direct factorization (Cholesky) rather
than the conjugate gradients (CG). The direct
factorization is computationally more expensive
than CG, but produces a better quality step
towards the solution.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 100*eps, about
2.2204e-14.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value
is ones(numberofvariables,1). lsqlin uses
TypicalX internally for scaling. TypicalX has an
effect only when x has unbounded components,
and when a TypicalX value for an unbounded
component is larger than 1.

Examples Find the least-squares solution to the overdetermined system C·x = d,
subject to A·x ≤ b and lb ≤ x ≤ ub.

First, enter the coefficient matrices and the lower and upper bounds.

C = [
0.9501 0.7620 0.6153 0.4057
0.2311 0.4564 0.7919 0.9354
0.6068 0.0185 0.9218 0.9169
0.4859 0.8214 0.7382 0.4102
0.8912 0.4447 0.1762 0.8936];
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d = [
0.0578
0.3528
0.8131
0.0098
0.1388];

A =[
0.2027 0.2721 0.7467 0.4659
0.1987 0.1988 0.4450 0.4186
0.6037 0.0152 0.9318 0.8462];

b =[
0.5251
0.2026
0.6721];

lb = -0.1*ones(4,1);
ub = 2*ones(4,1);

Next, call the constrained linear least-squares routine.

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqlin(C,d,A,b,[ ],[ ],lb,ub);

Examine x, lambda.ineqlin, lambda.lower, and lambda.upper:

x
x =

-0.1000
-0.1000
0.2152
0.3502

lambda.ineqlin
ans =

0
0.2392

0

lambda.lower
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ans =
0.0409
0.2784

0
0

lambda.upper
ans =

0
0
0
0

Nonzero elements of the vectors in the fields of lambda indicate
active constraints at the solution. In this case, the second inequality
constraint (in lambda.ineqlin) and the first lower and second lower
bound constraints (in lambda.lower) are active constraints (i.e., the
solution is on their constraint boundaries).

Notes For problems with no constraints, use \ (matrix left division). For
example, x= A\b.

Because the problem being solved is always convex, lsqlin will find a
global, although not necessarily unique, solution.

Better numerical results are likely if you specify equalities explicitly,
using Aeq and beq, instead of implicitly, using lb and ub.

Trust-Region-Reflective Algorithm

If x0 is not strictly feasible, lsqlin chooses a new strictly feasible
(centered) starting point.

If components of x have no upper (or lower) bounds, set the
corresponding components of ub (or lb) to Inf (or -Inf for lb) as
opposed to an arbitrary but very large positive (or negative in the case
of lower bounds) number.
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Algorithms Trust-Region-Reflective Algorithm

When the problem given to lsqlin has only upper and lower bounds;
i.e., no linear inequalities or equalities are specified, and the matrix
C has at least as many rows as columns, the default algorithm is
trust-region-reflective. This method is a subspace trust-region
method based on the interior-reflective Newton method described in
[1]. Each iteration involves the approximate solution of a large linear
system using the method of preconditioned conjugate gradients (PCG).
See “Trust-Region Methods for Nonlinear Minimization” on page 6-5
and “Preconditioned Conjugate Gradient Method” on page 6-29.

Active-Set Algorithm

lsqlin uses the active-set algorithm when you specify it with
optimoptions, or when you give linear inequalities or equalities. The
algorithm is based on quadprog, which uses an active set method similar
to that described in [2]. It finds an initial feasible solution by first
solving a linear programming problem. See “trust-region-reflective
quadprog Algorithm” on page 6-126.

Diagnostics Trust-Region-Reflective Algorithm

The trust-region-reflective algorithm does not allow equal upper
and lower bounds. For example, if lb(2) == ub(2), then lsqlin gives
the following error:

Equal upper and lower bounds not permitted
in this large-scale method.
Use equality constraints and the medium-scale
method instead.

At this time, you must use the active-set algorithm to solve equality
constrained problems.

Active-Set Algorithm

If the matrices C, A, or Aeq are sparse, and the problem formulation is
not solvable using the trust-region-reflective algorithm, lsqlin
warns that the matrices are converted to full.
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Warning: This problem formulation not yet available
for sparse matrices.
Converting to full to solve.

When a problem is infeasible, lsqlin gives a warning:

Warning: The constraints are overly stringent;
there is no feasible solution.

In this case, lsqlin produces a result that minimizes the worst case
constraint violation.

When the equality constraints are inconsistent, lsqlin gives

Warning: The equality constraints are overly stringent;
there is no feasible solution.

Limitations At this time, the only levels of display, using the Display option in
options, are 'off' and 'final'; iterative output using 'iter' is not
available.

Trust-Region-Reflective Algorithm Requirements

For Large Problems

C should be sparse.

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for
Minimizing a Quadratic Function Subject to Bounds on Some of the
Variables,” SIAM Journal on Optimization, Vol. 6, Number 4, pp.
1040-1058, 1996.

[2] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization,
Academic Press, London, UK, 1981.

See Also \ | lsqnonneg | quadprog | optimtool

How To • “Linear Least Squares”
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Purpose Solve nonlinear least-squares (nonlinear data-fitting) problems

Equation Solves nonlinear least-squares curve fitting problems of the form

min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

with optional lower and upper bounds lb and ub on the components of x.

x, lb, and ub can be vectors or matrices; see “Matrix Arguments” on
page 2-32.

Syntax x = lsqnonlin(fun,x0)
x = lsqnonlin(fun,x0,lb,ub)
x = lsqnonlin(fun,x0,lb,ub,options)
x = lsqnonlin(problem)
[x,resnorm] = lsqnonlin(...)
[x,resnorm,residual] = lsqnonlin(...)
[x,resnorm,residual,exitflag] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonlin(...)
[x,resnorm,residual,exitflag,output,lambda,

jacobian] = lsqnonlin(...)

Description lsqnonlin solves nonlinear least-squares problems, including nonlinear
data-fitting problems.

Rather than compute the value f x( ) 2
2 (the sum of squares), lsqnonlin

requires the user-defined function to compute the vector-valued function

f x

f x
f x

f xn

( )

( )
( )

( )

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1

2



Then, in vector terms, you can restate this optimization problem as
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min ( ) min ( ) ( ) ... ( )
x x

nf x f x f x f x2
2

1
2

2
2 2= + + +( )

where x is a vector or matrix and f(x) is a function that returns a vector
or matrix value. For details of matrix values, see “Matrix Arguments”
on page 2-32.

x = lsqnonlin(fun,x0) starts at the point x0 and finds a minimum
of the sum of squares of the functions described in fun. fun should
return a vector of values and not the sum of squares of the values. (The
algorithm implicitly computes the sum of squares of the components
of fun(x).)

Note “Passing Extra Parameters” on page 2-53 explains how to pass
extra parameters to the vector function f, if necessary.

x = lsqnonlin(fun,x0,lb,ub) defines a set of lower and upper
bounds on the design variables in x, so that the solution is always in the
range lb ≤ x ≤ ub.

x = lsqnonlin(fun,x0,lb,ub,options) minimizes with the
optimization options specified in options. Use optimoptions to set
these options. Pass empty matrices for lb and ub if no bounds exist.

x = lsqnonlin(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-235.

Create the problem structure by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,resnorm] = lsqnonlin(...) returns the value of the squared
2-norm of the residual at x: sum(fun(x).^2).

[x,resnorm,residual] = lsqnonlin(...) returns the value of the
residual fun(x) at the solution x.

[x,resnorm,residual,exitflag] = lsqnonlin(...) returns a value
exitflag that describes the exit condition.
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[x,resnorm,residual,exitflag,output] = lsqnonlin(...) returns
a structure output that contains information about the optimization.

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonlin(...) returns a structure lambda whose fields contain the
Lagrange multipliers at the solution x.

[x,resnorm,residual,exitflag,output,lambda, jacobian] =
lsqnonlin(...) returns the Jacobian of fun at the solution x.

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the outputs resnorm and residual are [].

Components of x0 that violate the bounds lb x ub are reset to the
interior of the box defined by the bounds. Components that respect the
bounds are not changed.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqnonlin. This section provides
function-specific details for fun, options, and problem:

fun The function whose sum of squares is minimized. fun is
a function that accepts a vector x and returns a vector F,
the objective functions evaluated at x. The function fun
can be specified as a function handle to a file:

x = lsqnonlin(@myfun,x0)

where myfun is a MATLAB function such as

function F = myfun(x)
F = ... % Compute function values at x

fun can also be a function handle for an anonymous
function.
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x = lsqnonlin(@(x)sin(x.*x),x0);

If the user-defined values for x and F are matrices, they
are converted to a vector using linear indexing.

Note The sum of squares should not be formed explicitly.
Instead, your function should return a vector of function
values. See “Examples” on page 10-245.

If the Jacobian can also be computed and the Jacobian
option is 'on', set by

options = optimoptions('lsqnonlin','Jacobian','on')

the function fun must return, in a second output
argument, the Jacobian value J, a matrix, at x. By
checking the value of nargout, the function can avoid
computing J when fun is called with only one output
argument (in the case where the optimization algorithm
only needs the value of F but not J).

function [F,J] = myfun(x)

F = ... % Objective function values at x

if nargout > 1 % Two output arguments

J = ... % Jacobian of the function evaluated at x

end

If fun returns a vector (matrix) of m components and x
has length n, where n is the length of x0, the Jacobian
J is an m-by-n matrix where J(i,j) is the partial
derivative of F(i) with respect to x(j). (The Jacobian J
is the transpose of the gradient of F.)

options “Options” on page 10-238 provides the function-specific
details for the options values.
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objective Objective function

x0 Initial point for x

lb Vector of lower bounds

ub Vector of upper bounds

solver 'lsqnonlin'

problem

options Options created with optimoptions

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqnonlin. This section provides
function-specific details for exitflag, lambda, and output:

Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated:

1 Function converged to a solution x.

2 Change in x was less than the
specified tolerance.

3 Change in the residual was less
than the specified tolerance.

4 Magnitude of search direction
was smaller than the specified
tolerance.

0 Number of iterations exceeded
options.MaxIter or number of
function evaluations exceeded
options.MaxFunEvals.

-1 Output function terminated the
algorithm.

exitflag
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-2 Problem is infeasible: the bounds
lb and ub are inconsistent.

-4 Line search could not sufficiently
decrease the residual along the
current search direction.

Structure containing the Lagrange multipliers at
the solution x (separated by constraint type). The
fields are

lower Lower bounds lb

lambda

upper Upper bounds ub

Structure containing information about the
optimization. The fields of the structure are

firstorderopt Measure of first-order optimality
(trust-region-reflective algorithm,
[ ] for others)

iterations Number of iterations taken

funcCount The number of function
evaluations

cgiterations Total number of PCG iterations
(trust-region-reflective algorithm,
[ ] for others)

stepsize Final displacement in x
(Levenberg-Marquardt algorithm)

algorithm Optimization algorithm used

output

message Exit message

Options Optimization options. Set or change options using the optimoptions
function. Some options apply to all algorithms, some are only relevant
when you are using the trust-region-reflective algorithm, and others
are only relevant when you are using the Levenberg-Marquardt
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algorithm. See “Optimization Options Reference” on page 9-7 for
detailed information.

Algorithm Options

Both algorithms use the following options:

Algorithm Choose between 'trust-region-reflective'
(default) and 'levenberg-marquardt'. Set
the initial Levenberg-Marquardt parameter λ
by setting Algorithm to a cell array such as
{'levenberg-marquardt',.005}. The default
λ = 0.01.

The Algorithm option specifies a preference for
which algorithm to use. It is only a preference,
because certain conditions must be met to use
each algorithm. For the trust-region-reflective
algorithm, the nonlinear system of equations
cannot be underdetermined; that is, the number of
equations (the number of elements of F returned
by fun) must be at least as many as the length of
x. The Levenberg-Marquardt algorithm does not
handle bound constraints. For more information
on choosing the algorithm, see “Choosing the
Algorithm” on page 2-7.

DerivativeCheck Compare user-supplied derivatives (gradients
of objective or constraints) to finite-differencing
derivatives. The choices are 'on' or the default
'off'.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on' or
the default 'off'.

DiffMaxChange Maximum change in variables for finite-difference
gradients (a positive scalar). The default is Inf.
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DiffMinChange Minimum change in variables for finite-difference
gradients (a positive scalar). The default is 0.

Display Level of display:

• 'off' or 'none' displays no output.

• 'iter' displays output at each iteration, and
gives the default exit message.

• 'iter-detailed' displays output at each
iteration, and gives the technical exit message.

• 'final' (default) displays just the final output,
and gives the default exit message.

• 'final-detailed' displays just the final
output, and gives the technical exit message.

FinDiffRelStep Scalar or vector step size factor. When you set
FinDiffRelStep to a vector v, forward finite
differences delta are

delta =
v.*sign(x).*max(abs(x),TypicalX);

and central finite differences are

delta = v.*max(abs(x),TypicalX);

Scalar FinDiffRelStep expands to a vector. The
default is sqrt(eps) for forward finite differences,
and eps^(1/3) for central finite differences.

FinDiffType Finite differences, used to estimate gradients,
are either 'forward' (default), or 'central'
(centered). 'central' takes twice as many
function evaluations, but should be more accurate.

The algorithm is careful to obey bounds when
estimating both types of finite differences. So, for
example, it could take a backward, rather than a
forward, difference to avoid evaluating at a point
outside bounds.
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FunValCheck Check whether function values are valid. 'on'
displays an error when the function returns a
value that is complex, Inf, or NaN. The default
'off' displays no error.

Jacobian If 'on', lsqnonlin uses a user-defined Jacobian
(defined in fun), or Jacobian information (when
using JacobMult), for the objective function. If
'off' (default), lsqnonlin approximates the
Jacobian using finite differences.

MaxFunEvals Maximum number of function evaluations
allowed, a positive integer. The default is
100*numberOfVariables.

MaxIter Maximum number of iterations allowed, a positive
integer. The default is 400.

OutputFcn Specify one or more user-defined functions that
an optimization function calls at each iteration,
either as a function handle or as a cell array of
function handles. The default is none ([]). See
“Output Function” on page 9-21.

PlotFcns Plots various measures of progress while the
algorithm executes, select from predefined plots or
write your own. Pass a function handle or a cell
array of function handles. The default is none ([]):

• @optimplotx plots the current point.

• @optimplotfunccount plots the function count.

• @optimplotfval plots the function value.

• @optimplotresnorm plots the norm of the
residuals.

• @optimplotstepsize plots the step size.

• @optimplotfirstorderopt plots the first-order
optimality measure.
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For information on writing a custom plot function,
see “Plot Functions” on page 9-30.

TolFun Termination tolerance on the function value, a
positive scalar. The default is 1e-6.

TolX Termination tolerance on x, a positive scalar. The
default is 1e-6.

TypicalX Typical x values. The number of elements in
TypicalX is equal to the number of elements
in x0, the starting point. The default value is
ones(numberofvariables,1). lsqnonlin uses
TypicalX for scaling finite differences for gradient
estimation.

Trust-Region-Reflective Algorithm Only

The trust-region-reflective algorithm uses the following options:

JacobMult Function handle for Jacobian multiply function.
For large-scale structured problems, this function
computes the Jacobian matrix product J*Y, J'*Y,
or J'*(J*Y) without actually forming J. The
function is of the form

W = jmfun(Jinfo,Y,flag)

where Jinfo contains the matrix used to compute
J*Y (or J'*Y, or J'*(J*Y)). The first argument
Jinfo must be the same as the second argument
returned by the objective function fun, for
example, by

[F,Jinfo] = fun(x)

Y is a matrix that has the same number of rows
as there are dimensions in the problem. flag
determines which product to compute:
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• If flag == 0 then W = J'*(J*Y).

• If flag > 0 then W = J*Y.

• If flag < 0 then W = J'*Y.

In each case, J is not formed explicitly. lsqnonlin
uses Jinfo to compute the preconditioner. See
“Passing Extra Parameters” on page 2-53 for
information on how to supply values for any
additional parameters jmfun needs.

Note 'Jacobian' must be set to 'on' for
lsqnonlin to pass Jinfo from fun to jmfun.

See “Minimization with Dense Structured
Hessian, Linear Equalities” on page 6-80 and
“Jacobian Multiply Function with Linear Least
Squares” on page 6-224 for similar examples.

JacobPattern Sparsity pattern of the Jacobian for finite
differencing. Set JacobPattern(i,j) = 1
when fun(i) depends on x(j). Otherwise,
set JacobPattern(i,j) = 0. In other words,
JacobPattern(i,j) = 1 when you can have
∂fun(i)/∂x(j) ≠ 0.

Use JacobPattern when it is inconvenient to
compute the Jacobian matrix J in fun, though
you can determine (say, by inspection) when
fun(i) depends on x(j). lsqnonlin can
approximate J via sparse finite differences when
you give JacobPattern.

In the worst case, if the structure is unknown,
do not set JacobPattern. The default behavior
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is as if JacobPattern is a dense matrix of ones.
Then lsqnonlin computes a full finite-difference
approximation in each iteration. This can be
very expensive for large problems, so it is usually
better to determine the sparsity structure.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a positive scalar.
The default is max(1, numberOfVariables/2)).
For more information, see “Algorithms” on page
10-217.

PrecondBandWidth Upper bandwidth of preconditioner for
PCG, a nonnegative integer. The default
PrecondBandWidth is Inf, which means a direct
factorization (Cholesky) is used rather than the
conjugate gradients (CG). The direct factorization
is computationally more expensive than CG,
but produces a better quality step towards the
solution. Set PrecondBandWidth to 0 for diagonal
preconditioning (upper bandwidth of 0). For some
problems, an intermediate bandwidth reduces
the number of PCG iterations.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

Levenberg-Marquardt Algorithm Only

The Levenberg-Marquardt algorithm uses the following options:

ScaleProblem 'Jacobian' can sometimes improve the
convergence of a poorly scaled problem; the
default is 'none'.
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Examples Find x that minimizes

2 2 1 2
2

1

10
+ − −( )

=
∑ k e ekx kx

k

,

starting at the point x = [0.3, 0.4].

Because lsqnonlin assumes that the sum of squares is not explicitly
formed in the user-defined function, the function passed to lsqnonlin
should instead compute the vector-valued function

F x k e ek
kx kx( ) ,= + − −2 2 1 2

for k = 1 to 10 (that is, F should have 10 components).

First, write a file to compute the 10-component vector F.

function F = myfun(x)
k = 1:10;
F = 2 + 2*k-exp(k*x(1))-exp(k*x(2));

Next, invoke an optimization routine.

x0 = [0.3 0.4] % Starting guess
[x,resnorm] = lsqnonlin(@myfun,x0); % Invoke optimizer

After about 24 function evaluations, this example gives the solution

x,resnorm
x =

0.2578 0.2578

resnorm =
124.3622

Algorithms Trust-Region-Reflective Optimization

By default, lsqnonlin chooses the trust-region-reflective algorithm.
This algorithm is a subspace trust-region method and is based on
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the interior-reflective Newton method described in [1] and [2]. Each
iteration involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients (PCG).
See “Trust-Region-Reflective Least Squares” on page 6-201, and in
particular “Large Scale Nonlinear Least Squares” on page 6-203.

Levenberg-Marquardt Optimization

If you set the Algorithm option to 'levenberg-marquardt' using
optimoptions, lsqnonlin uses the Levenberg-Marquardt method [4],
[5], and [6]. See “Levenberg-Marquardt Method” on page 6-205.

Diagnostics Trust-Region-Reflective Optimization

The trust-region-reflective method does not allow equal upper and lower
bounds. For example, if lb(2)==ub(2), lsqlin gives the error

Equal upper and lower bounds not permitted.

(lsqnonlin does not handle equality constraints, which is another
way to formulate equal bounds. If equality constraints are present, use
fmincon, fminimax, or fgoalattain for alternative formulations where
equality constraints can be included.)

Limitations The function to be minimized must be continuous. lsqnonlin might
only give local solutions.

lsqnonlin can solve complex-valued problems directly with the
levenberg-marquardt algorithm. However, this algorithm does
not accept bound constraints. For a complex problem with bound
constraints, split the variables into real and imaginary parts, and
use the trust-region-reflective algorithm. See “Fit a Model to
Complex-Valued Data” on page 6-231.

Trust-Region-Reflective Optimization

The trust-region-reflective algorithm for lsqnonlin does not solve
underdetermined systems; it requires that the number of equations, i.e.,
the row dimension of F, be at least as great as the number of variables.

10-246



lsqnonlin

In the underdetermined case, the Levenberg-Marquardt algorithm is
used instead.

The preconditioner computation used in the preconditioned conjugate
gradient part of the trust-region-reflective method forms JTJ (where J
is the Jacobian matrix) before computing the preconditioner; therefore,
a row of J with many nonzeros, which results in a nearly dense product
JTJ, can lead to a costly solution process for large problems.

If components of x have no upper (or lower) bounds, lsqnonlin prefers
that the corresponding components of ub (or lb) be set to inf (or -inf
for lower bounds) as opposed to an arbitrary but very large positive (or
negative for lower bounds) number.

Trust-Region-Reflective Problem Coverage and Requirements

For Large Problems

• Provide sparsity structure of the Jacobian or compute the Jacobian
in fun.

• The Jacobian should be sparse.

Levenberg-Marquardt Optimization

The Levenberg-Marquardt algorithm does not handle bound constraints.

Since the trust-region-reflective algorithm does not handle
underdetermined systems and the Levenberg-Marquardt does not
handle bound constraints, problems with both these characteristics
cannot be solved by lsqnonlin.

References [1] Coleman, T.F. and Y. Li, “An Interior, Trust Region Approach
for Nonlinear Minimization Subject to Bounds,” SIAM Journal on
Optimization, Vol. 6, pp. 418–445, 1996.

[2] Coleman, T.F. and Y. Li, “On the Convergence of Reflective Newton
Methods for Large-Scale Nonlinear Minimization Subject to Bounds,”
Mathematical Programming, Vol. 67, Number 2, pp. 189-224, 1994.
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[3] Dennis, J.E., Jr., “Nonlinear Least-Squares,” State of the Art in
Numerical Analysis, ed. D. Jacobs, Academic Press, pp. 269–312, 1977.

[4] Levenberg, K., “A Method for the Solution of Certain Problems in
Least-Squares,” Quarterly Applied Math. 2, pp. 164–168, 1944.

[5] Marquardt, D., “An Algorithm for Least-Squares Estimation of
Nonlinear Parameters,” SIAM Journal Applied Math., Vol. 11, pp.
431–441, 1963.

[6] Moré, J.J., “The Levenberg-Marquardt Algorithm: Implementation
and Theory,” Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, pp. 105–116, 1977.

See Also lsqcurvefit | lsqlin | optimoptions | optimtool

How To • function_handle

• “Nonlinear Least Squares (Curve Fitting)”
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Purpose Solve nonnegative least-squares constraint problem

Equation Solves nonnegative least-squares curve fitting problems of the form

min , .
x

C x d x⋅ − ≥2
2 0 where 

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,options)
x = lsqnonneg(problem)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d)
subject to x 0. C and d must be real.

x = lsqnonneg(C,d,options)minimizes with the optimization options
specified in the structure options. Use optimset to set these options.

x = lsqnonneg(problem) finds the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-250.

Create the structure problem by exporting a problem from Optimization
app, as described in “Exporting Your Work” on page 5-13.

[x,resnorm] = lsqnonneg(...) returns the value of the squared
2-norm of the residual, norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual
d-C*x.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns
a structure output that contains information about the optimization.
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[x,resnorm,residual,exitflag,output,lambda] =
lsqnonneg(...) returns the Lagrange multipliers in the vector lambda.

Input
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments passed into lsqnonneg. This section provides
function-specific details for options and problem:

Use optimset to set or change the values of these
fields in the options structure, options. See
“Optimization Options Reference” on page 9-7 for
detailed information.

Display Level of display:

• 'off' or 'none' displays no output.

• 'final' displays just the final
output.

• 'notify' (default) displays output
only if the function does not
converge.

options

TolX Termination tolerance on x, a
positive scalar. The default is
10*eps*norm(C,1)*length(C).

C Matrix

d Vector

x0 Initial point for x

solver 'lsqnonneg'

problem

options Options structure created with
optimset

Output
Arguments

“Function Arguments” on page 9-2 contains general descriptions
of arguments returned by lsqnonneg. This section provides
function-specific details for exitflag, lambda, and output:
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Integer identifying the reason the algorithm
terminated. The following lists the values of
exitflag and the corresponding reasons the
algorithm terminated.

1 Function converged to a
solution x.

exitflag

0 Number of iterations exceeded
options.MaxIter.

lambda Vector containing the Lagrange multipliers:
lambda(i) 0 when x(i) is (approximately)
0, and lambda(i) is (approximately) 0 when
x(i)>0.

Structure containing information about the
optimization. The fields are

iterations Number of iterations taken

algorithm 'active-set'

output

message Exit message

Examples Compare the unconstrained least-squares solution to the lsqnonneg
solution for a 4-by-2 problem.

C = [
0.0372 0.2869
0.6861 0.7071
0.6233 0.6245
0.6344 0.6170];

d = [
0.8587
0.1781
0.0747
0.8405];

[C\d, lsqnonneg(C,d)]
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ans =
-2.5627 0
3.1108 0.6929

[norm(C*(C\d)-d), norm(C*lsqnonneg(C,d)-d)]
ans =

0.6674 0.9118

The solution from lsqnonneg does not fit as well as the least-squares
solution. However, the nonnegative least-squares solution has no
negative components.

Algorithms lsqnonneg uses the algorithm described in [1]. The algorithm starts
with a set of possible basis vectors and computes the associated
dual vector lambda. It then selects the basis vector corresponding to
the maximum value in lambda in order to swap it out of the basis
in exchange for another possible candidate. This continues until
lambda 0.

Notes The nonnegative least-squares problem is a subset of the constrained
linear least-squares problem. Thus, when C has more rows than
columns (i.e., the system is overdetermined),

[x,resnorm,residual,exitflag,output,lambda] = ...
lsqnonneg(C,d)

is equivalent to

[m,n] = size(C);
[x,resnorm,residual,exitflag,output,lambda_lsqlin] = ...

lsqlin(C,d,-eye(n,n),zeros(n,1));

except that lambda = -lambda_lsqlin.ineqlin.

For problems greater than order 20, lsqlin might be faster than
lsqnonneg; otherwise lsqnonneg is generally more efficient.
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References [1] Lawson, C.L. and R.J. Hanson, Solving Least-Squares Problems,
Prentice-Hall, Chapter 23, p. 161, 1974.

See Also \ | lsqlin | optimset | optimtool
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Purpose Optimization options values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
option in the optimization options structure options. You need to type
only enough leading characters to define the option name uniquely.
Case is ignored for option names.

val = optimget(options,'param',default) returns default if the
specified option is not defined in the optimization options structure
options. Note that this form of the function is used primarily by other
optimization functions.

Examples This statement returns the value of the Display option in the structure
called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display option in the structure
called my_options (as in the previous example) except that if the
Display option is not defined, it returns the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset
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Purpose Create optimization options

Syntax options = optimoptions(SolverName)
options = optimoptions(SolverName,Name,Value)

options = optimoptions(oldoptions,Name,Value)

options = optimoptions(SolverName,oldoptions)

Description options = optimoptions(SolverName) returns a set of default options
for the SolverName solver.

options = optimoptions(SolverName,Name,Value) returns options
with the named parameters altered with the specified values.

options = optimoptions(oldoptions,Name,Value) returns a copy
of oldoptions with the named parameters altered with the specified
values.

options = optimoptions(SolverName,oldoptions) returns default
options for the SolverName solver, and copies the applicable options
in oldoptions to options.

Input
Arguments

SolverName - Solver name
string or function handle

Solver name, specified as a string or function handle.

Example: 'fmincon'

Example: @fmincon

Data Types
char | function_handle

oldoptions - Options
options created using optimoptions
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Options, specified as an options object. The optimoptions function
creates options objects.

Example: oldoptions = optimoptions(@fminunc)

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example:
optimoptions(@fmincon,'Display','iter','TolFun',1e-10) sets
fmincon options to have iterative display, and to have a TolFun
tolerance of 1e-10.

For relevant name-value pairs, look at the options table for your solver:

• bintprog options

• fgoalattain options

• fmincon options

• fminimax options

• fminunc options

• fseminf options

• fsolve options

• intlinprog options

• ktrlink options

• linprog options

• lsqcurvefit options

• lsqlin options

• lsqnonlin options
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• quadprog options

Output
Arguments

options - Options object
options object

Options object, containing options for the SolverName solver.

Examples Create Default Options

Create default options for the fmincon solver.

options = optimoptions('fmincon')
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Create Nondefault Options

Create nondefault options for the fmincon solver.

options = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',1500)
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Update Options

Update existing options with new values.

Create options for the lsqnonlin solver.

oldoptions = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt
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Increase MaxFunEvals to 2000.
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options = optimoptions(oldoptions,'MaxFunEvals',2000)
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Use Dot Notation to Update Options

Update existing options with new values by using dot notation.

Create options for the lsqnonlin solver.

options = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','MaxF
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Increase MaxFunEvals to 2000 by using dot notation.

options.MaxFunEvals = 2000

10-265



optimoptions

10-266



optimoptions

Copy Options to Another Solver

Transfer nondefault options for the fmincon solver to options for the
fminunc solver.

Create nondefault options for the fmincon solver.

oldoptions = optimoptions(@fmincon,'Algorithm','sqp','MaxIter',1500)
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Transfer the applicable options to the fminunc solver.

options = optimoptions(@fminunc,oldoptions)
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Alternative
Functionality

App

You can set and modify options using the Optimization app (optimtool).

See Also optimset | optimtool

Concepts • “Set Options”
• “Optimization App” on page 5-2
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Purpose Create or edit optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description options = optimset('param1',value1,'param2',value2,...)
creates an optimization options structure called options, in which the
specified options (param) have specified values. Any unspecified options
are set to [] (options with value [] indicate to use the default value for
that option when you pass options to the optimization function). It is
sufficient to type only enough leading characters to define the option
name uniquely. Case is ignored for option names.

optimset with no input or output arguments displays a complete list
of options with their valid values.

options = optimset (with no input arguments) creates an options
structure options where all fields are set to [].

options = optimset(optimfun) creates an options structure options
with all option names and default values relevant to the optimization
function optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy
of oldopts, modifying the specified options with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure, oldopts, with a new options structure, newopts. Any options
in newopts with nonempty values overwrite the corresponding old
options in oldopts.

Options For more information about individual options, including their
default values, see the reference pages for the optimization functions.
“Optimization Options Reference” on page 9-7 provides descriptions of
optimization options and which functions use them.

10-272



optimset

Use the command optimset(@solver) or the equivalent optimset
solver to see the default values of relevant optimization options for
a solver. Some solvers do not have a default value, since the default
depends on the algorithm. For example, the default value of the maxIter
option in the fmincon solver is 400 for the trust-region-reflective
algorithm, but is 1000 for the interior-point algorithm.

You can also see the default values of all relevant options in the
Optimization app. To see the options:

1 Start the Optimization app, e.g., with the optimtool command.

2 Choose the solver from the Solver menu.

3 Choose the algorithm, if applicable, from the Algorithm menu.

4 Read off the default values within the Options pane.

Examples This statement creates an optimization options structure called
options in which the Display option is set to 'iter' and the TolFun
option is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options,
changing the value of the TolX option and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure options
that contains all the option names and default values relevant to the
function fminbnd.

options = optimset('fminbnd')

If you only want to see the default values for fminbnd, you can simply
type

optimset fminbnd
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or equivalently

optimset('fminbnd')

See Also optimget | optimoptions | optimtool
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Purpose Select solver and optimization options, run problems

Syntax optimtool
optimtool(optstruct)
optimtool('solver')

Description optimtool opens the Optimization app. Use the Optimization app
to select a solver, optimization options, and run problems. See
“Optimization App” on page 5-2 for a complete description of the
Optimization app.

The Optimization app can be used to run any Optimization
Toolbox solver, and any Global Optimization Toolbox solver except
GlobalSearch and MultiStart. Results can be exported to a file or to
the MATLAB workspace as a structure.

optimtool(optstruct) starts the Optimization app and loads
optstruct. optstruct can be either optimization options or an
optimization problem structure. Create optimization options with the
optimoptions or optimset function, or by using the export option from
the Optimization app. Create a problem structure by exporting the
problem from the Optimization app to the MATLAB workspace. If you
have Global Optimization Toolbox, you can create a problem structure
with the createOptimProblem function.

optimtool('solver') starts the Optimization app with the specified
solver, identified as a string, and the corresponding default options
and problem fields. All Optimization Toolbox and Global Optimization
Toolbox solvers are valid inputs to the optimtool function, except
GlobalSearch and MultiStart.
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See Also optimoptions | optimset

How To • “Optimization App” on page 5-2

• “Solve a Constrained Nonlinear Problem” on page 1-3
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Purpose Quadratic programming

Syntax x = quadprog(H,f)
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog(H,f,...)
[x,fval,exitflag] = quadprog(H,f,...)
[x,fval,exitflag,output] = quadprog(H,f,...)
[x,fval,exitflag,output,lambda] = quadprog(H,f,...)

Description Finds a minimum for a problem specified by

min
,

,
.

x

T Tx Hx f x
A x b

Aeq x beq
lb x ub

1
2

+
⋅ ≤
⋅ =
≤ ≤

⎧
⎨
⎪

⎩⎪
 such that 

H, A, and Aeq are matrices, and f, b, beq, lb, ub, and x are vectors.

f, lb, and ub can be passed as vectors or matrices; see “Matrix
Arguments” on page 2-32.

x = quadprog(H,f) returns a vector x that minimizes
1/2*x'*H*x + f'*x. H must be positive definite for the problem to
have a finite minimum.

x = quadprog(H,f,A,b) minimizes 1/2*x'*H*x + f'*x subject to
the restrictions A*x ≤ b. A is a matrix of doubles, and b is a vector
of doubles.

x = quadprog(H,f,A,b,Aeq,beq) solves the preceding problem subject
to the additional restrictions Aeq*x = beq. Aeq is a matrix of doubles,
and beq is a vector of doubles. If no inequalities exist, set A = [] and
b = [].
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x = quadprog(H,f,A,b,Aeq,beq,lb,ub) solves the preceding problem
subject to the additional restrictions lb ≤ x ≤ ub. lb and ub are
vectors of doubles, and the restrictions hold for each x component. If no
equalities exist, set Aeq = [] and beq = [].

Note If the specified input bounds for a problem are inconsistent, the
output x is x0 and the output fval is [].

quadprog resets components of x0 that violate the bounds lb ≤ x ≤ ub
to the interior of the box defined by the bounds. quadprog does not
change components that respect the bounds.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) solves the preceding
problem starting from the vector x0. If no bounds exist, set lb = [] and
ub = []. Some quadprog algorithms ignore x0, see “Input Arguments”
on page 10-279.

x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) solves the
preceding problem using the optimization options specified in options.
Use optimoptions to create options. If you do not want to give an
initial point, set x0 = [].

x = quadprog(problem) returns the minimum for problem, where
problem is a structure described in “Input Arguments” on page 10-279.
Create problem by exporting a problem using the Optimization app; see
“Exporting Your Work” on page 5-13.

[x,fval] = quadprog(H,f,...) returns the value of the objective
function at x:

fval = 0.5*x'*H*x + f'*x

[x,fval,exitflag] = quadprog(H,f,...) exitflag, a scalar that
describes the exit condition of quadprog.

[x,fval,exitflag,output] = quadprog(H,f,...) output, a
structure that contains information about the optimization.
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[x,fval,exitflag,output,lambda] = quadprog(H,f,...) lambda, a
structure whose fields contain the Lagrange multipliers at the solution
x.

Input
Arguments

H

Symmetric matrix of doubles. Represents the quadratic in the
expression 1/2*x'*H*x + f'*x.

f

Vector of doubles. Represents the linear term in the expression
1/2*x'*H*x + f'*x.

A

Matrix of doubles. Represents the linear coefficients in the constraints
A*x ≤ b.

b

Vector of doubles. Represents the constant vector in the constraints
A*x ≤ b.

Aeq

Matrix of doubles. Represents the linear coefficients in the constraints
Aeq*x = beq.

beq

Vector of doubles. Represents the constant vector in the constraints
Aeq*x = beq.

lb

Vector of doubles. Represents the lower bounds elementwise in
lb ≤ x ≤ ub.

ub
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Vector of doubles. Represents the upper bounds elementwise in
lb ≤ x ≤ ub.

x0

Vector of doubles. Optional. The initial point for some quadprog
algorithms:

• active-set

• trust-region-reflective when there are only bound constraints

If you do not give x0, quadprog sets all components of x0 to a
point in the interior of the box defined by the bounds. quadprog
ignores x0 for the interior-point-convex algorithm, and for the
trust-region-reflective algorithm with equality constraints.

options

Options created using optimoptions or the Optimization app.

All Algorithms

Algorithm Choose the algorithm:

• 'interior-point-convex' (default)

• 'trust-region-reflective'

• 'active-set'

The 'trust-region-reflective' algorithm
handles problems with only bounds, or only
linear equality constraints, but not both. The
'interior-point-convex' algorithm handles
only convex problems. For details, see “Choosing
the Algorithm” on page 2-7.

Diagnostics Display diagnostic information about the function
to be minimized or solved. The choices are 'on'
or 'off' (default).
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All Algorithms (Continued)

Display Level of display returned to the command line.

• 'off' or 'none' displays no output.

• 'final' displays just the final output (default).

The 'interior-point-convex' algorithm allows
additional values:

• 'iter' gives iterative display.

• 'iter-detailed' gives iterative display with
a detailed exit message.

• 'final-detailed' displays just the final
output, with a detailed exit message.

MaxIter Maximum number of iterations allowed, a positive
integer.

• For a 'trust-region-reflective'
equality-constrained problem, the
default value is 2*(numberOfVariables
- numberOfEqualities).

• For all other algorithms and problems, the
default value is 200.
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All Algorithms Except active-set

TolFun Termination tolerance on the function value, a
positive scalar.

• For a 'trust-region-reflective'
equality-constrained problem, the default value
is 1e-6.

• For a 'trust-region-reflective'
bound-constrained problem, the default value
is 100*eps, about 2.2204e-14.

• For 'interior-point-convex', the default
value is 1e-8.

TolX Termination tolerance on x, a positive scalar.

• For 'trust-region-reflective', the default
value is 100*eps, about 2.2204e-14.

• For 'interior-point-convex', the default
value is 1e-8.

trust-region-reflective Algorithm Only

HessMult Function handle for a Hessian multiply function.
For large-scale structured problems, this
function computes the Hessian matrix product
H*Y without actually forming H. The function
has the form

W = hmfun(Hinfo,Y)

where Hinfo and possibly some additional
parameters contain the matrices used to
compute H*Y.
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trust-region-reflective Algorithm Only (Continued)

See “Quadratic Minimization with Dense,
Structured Hessian” on page 6-138 for an
example that uses this option.

MaxPCGIter Maximum number of PCG (preconditioned
conjugate gradient) iterations, a
positive scalar. The default is
max(1,floor(numberOfVariables/2)).
For more information, see “Preconditioned
Conjugate Gradient Method” on page 6-128.

PrecondBandWidth Upper bandwidth of the preconditioner for
PCG, a nonnegative integer. By default,
quadprog uses diagonal preconditioning (upper
bandwidth 0). For some problems, increasing
the bandwidth reduces the number of PCG
iterations. Setting PrecondBandWidth to Inf
uses a direct factorization (Cholesky) rather
than the conjugate gradients (CG). The direct
factorization is computationally more expensive
than CG, but produces a better quality step
toward the solution.

TolPCG Termination tolerance on the PCG iteration, a
positive scalar. The default is 0.1.

TypicalX Typical x values. The number of elements in
TypicalX equals the number of elements in
x0, the starting point. The default value is
ones(numberofvariables,1). quadprog uses
TypicalX internally for scaling. TypicalX
has an effect only when x has unbounded
components, and when a TypicalX value for an
unbounded component exceeds 1.
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interior-point-convex Algorithm Only

TolCon Tolerance on the constraint violation, a positive
scalar. The default is 1e-8.

problem

Structure encapsulating the quadprog inputs and options:

H Symmetric matrix in 1/2*x'*H*x

f Vector in linear term f'*x

Aineq Matrix in linear inequality constraints
Aineq*x ≤ bineq

bineq Vector in linear inequality constraints
Aineq*x ≤ bineq

Aeq Matrix in linear equality constraints
Aeq*x = beq

beq Vector in linear equality constraints
Aeq*x = beq

lb Vector of lower bounds

ub Vector of upper bounds

x0 Initial point for x

solver 'quadprog'

options Options created using optimoptions or the
Optimization app

Output
Arguments

x

Vector that minimizes 1/2*x'*H*x + f'*x subject to all bounds and
linear constraints. x can be a local minimum for nonconvex problems.
For convex problems, x is a global minimum. For more information, see
“Local vs. Global Optima” on page 4-27.
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fval

Value of 1/2*x'*H*x + f'*x at the solution x, a double.

exitflag

Integer identifying the reason the algorithm terminated. The following
lists the values of exitflag and the corresponding reasons the
algorithm terminated:

All Algorithms

1 Function converged to the solution x.

0 Number of iterations exceeded
options.MaxIter.

-2 Problem is infeasible.

-3 Problem is unbounded.

interior-point-convex Algorithm

-6 Nonconvex problem detected.

trust-region-reflective Algorithm

3 Change in the objective function value was
smaller than options.TolFun.

-4 Current search direction was not a direction of
descent. No further progress could be made.

active-set Algorithm

4 Local minimizer was found.

-7 Magnitude of search direction became too
small. No further progress could be made. The
problem is ill-posed or badly conditioned.

output

Structure containing information about the optimization. The fields are:
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iterations Number of iterations taken

algorithm Optimization algorithm used

cgiterations Total number of PCG iterations
(trust-region-reflective algorithm only)

constrviolation Maximum of constraint functions

firstorderopt Measure of first-order optimality

message Exit message

lambda

Structure containing the Lagrange multipliers at the solution x
(separated by constraint type). The fields are:

lower Lower bounds lb

upper Upper bounds ub

ineqlin Linear inequalities

eqlin Linear equalities

For details, see “Lagrange Multiplier Structures” on page 3-27.

Examples Solve a simple quadratic programming problem: find values of x that
minimize

f x x x x x x x( ) ,= + − − −1
2

2 61
2

2
2

1 2 1 2

subject to

x1 + x2 ≤ 2
–x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3
0 ≤ x1, 0 ≤ x2.
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In matrix notation this is

f x x Hx f xT T( ) ,= +1
2

where

H f x
x
x

=
−

−
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−
⎡

⎣
⎢
⎤

⎦
⎥ =

⎡

⎣
⎢
⎤

⎦
⎥

1 1
1 2

2
6

1

2
, , .    

1 Enter the coefficient matrices:

H = [1 -1; -1 2];
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
lb = zeros(2,1);

2 Set the options to use the 'active-set' algorithm with no display:

opts =
optimoptions('quadprog','Algorithm','active-set','Display','off');

3 Call quadprog:

[x,fval,exitflag,output,lambda] = ...
quadprog(H,f,A,b,[],[],lb,[],[],opts);

4 Examine the final point, function value, and exit flag:

x,fval,exitflag

x =
0.6667
1.3333

fval =
-8.2222
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exitflag =
1

5 An exit flag of 1 means the result is a local minimum. Because H is
a positive definite matrix, this problem is convex, so the minimum
is a global minimum. You can see H is positive definite by noting
all its eigenvalues are positive:

eig(H)
ans =

0.3820
2.6180

Use the 'interior-point-convex' algorithm to solve a sparse
quadratic program.

1 Generate a sparse symmetric matrix for the quadratic form:

v = sparse([1,-.25,0,0,0,0,0,-.25]);
H = gallery('circul',v);

2 Include the linear term for the problem:

f = -4:3;

3 Include the constraint that the sum of the terms in the solution x
must be less than -2:

A = ones(1,8);b = -2;

4 Set options to use the 'interior-point-convex' algorithm and
iterative display:

opts = optimoptions('quadprog',...

'Algorithm','interior-point-convex','Display','iter');
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5 Run the quadprog solver and observe the iterations:

[x fval eflag output lambda] =
quadprog(H,f,A,b,[],[],[],[],[],opts);

First-order Total relative
Iter f(x) Feasibility optimality error

0 -2.000000e+000 1.000e+001 4.500e+000 1.200e+001
1 -2.630486e+001 0.000e+000 9.465e-002 9.465e-002
2 -2.639877e+001 0.000e+000 3.914e-005 3.914e-005
3 -2.639881e+001 0.000e+000 3.069e-015 6.883e-015

Minimum found that satisfies the constraints.

Optimization completed because the objective function is
non-decreasing in feasible directions, to within the default value
of the function tolerance, and constraints are satisfied to within
the default value of the constraint tolerance.

6 Examine the solution:

fval,eflag

fval =
-26.3988

eflag =
1

For the 'interior-point-convex' algorithm, an exit flag of 1means
the result is a global minimum.

Algorithms trust-region-reflective

The 'trust-region-reflective' algorithm is a subspace trust-region
method based on the interior-reflective Newton method described in
[1]. Each iteration involves the approximate solution of a large linear
system using the method of preconditioned conjugate gradients (PCG).
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For more information, see “trust-region-reflective quadprog
Algorithm” on page 6-126.

active-set

quadprog uses an active set method, which is also a projection method,
similar to that described in [2]. It finds an initial feasible solution by
first solving a linear programming problem. For more information, see
“active-set quadprog Algorithm” on page 6-131.

interior-point-convex

The 'interior-point-convex' algorithm attempts to follow a path
that is strictly inside the constraints. It uses a presolve module to
remove redundancies, and to simplify the problem by solving for
components that are straightforward. For more information, see
“interior-point-convex quadprog Algorithm” on page 6-121.

References [1] Coleman, T.F. and Y. Li, “A Reflective Newton Method for
Minimizing a Quadratic Function Subject to Bounds on Some of the
Variables,” SIAM Journal on Optimization, Vol. 6, Number 4, pp.
1040–1058, 1996.

[2] Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization,
Academic Press, London, UK, 1981.

[3] Gould, N. and P. L. Toint. “Preprocessing for quadratic
programming.” Math. Programming, Series B, Vol. 100, pp. 95–132,
2004.

Alternatives You can use the Optimization app for quadratic programming.
Enter optimtool at the MATLAB command line, and choose the
quadprog - Quadratic programming solver. For more information,
see “Optimization App” on page 5-2.

See Also linprog | lsqlin | optimoptions

How To • “Optimization Problem Setup”
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